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ABSTRACT

The primary theme is the nonlinear behavior of shell structures. A

general formulation that can be applied to all structures is derived and then

specialized for application to shells through the development of a quadrilateral

shell finite element.

The formulation is in incremental form and is derived in terms of the

material coordinate system. The procedure evolved to solve the nonlinear

equilibrium equations allows for the inclusion of all terms as opposed to pre-

vious incremental procedures where the equations are linearized. The

derivation of the formulation and solution procedure is independent of the

finite element method, but it is this method that is used to exercise and apply

the formulation. An elementary nonlinear problem is first solved and then

more complex problems are studied by using the formulation and solution

procedure.

The quadrilateral shell element which is introduced uses the exact
geometry of the shell surface in the computation of stiffness matrices and

loads. A consistent method is used for transforming the element and its

properties; this improves element effectiveness for application to branched and
reinforced shells. The shell surface geometry is used in the enforcement of

the continuity of displacements for satisfying the convergence requirements.

The ability of the element to undergo rigid body motion without causing

strains is examined by studying the eigenvalues of the stiffness matrix of an

element.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL REMARKS

The mathematical description of large finite deformations is well founded. Unfor-

tunately, it is also very complicated and difficult to apply to complex practical problems.

Writers have presented the elegant theory for finite deformations but have been hampered in

the solution of other than very basic problems. The present availability of high-speed com-

puters, coupled with numerical methods, now makes it feasible to exploit the significant

fundamental work that has been accomplished by pioneers in the field.

The most prominent numerical approach for solving complex structural problems is

the finite element method. There has been a great deal of development and application of

the method within the last 15 years. More investigators in the solid mechanics and structural

engineering fields are probably devoted to this subject than to any other. Significant progress

has been made. The requirements that must be satisfied to achieve adequate solutions have

been recognized and methods have been conceived to satisfy a large number of these require-

ments. Progress on the most difficult of problems has been significant.

The need for a comprehensive analysis of general shell structures prompted investi-

gators to turn to the finite element method. The early work was directed to developing linear

analyses for shells, which is now well in hand. Small deflection, elastic analyses of shells

with arbitrary geometry and reinforcement can now be conducted routinely. Research is

currently being conducted to extend these shell analyses into the nonlinear geometry and non-

linear material range. Significant work has already been done but reasonable accuracy is

obtained at the expense of very high computing costs.

The research reported herein is directed to a better understanding of the nonlinear

behavior of structures, in particular, that of shell structures. A general formulation for con-

ducting nonlinear incremental analyses is introduced and a quadrilateral shell finite element is

developed. It is hoped that both will contribute to the more efficient solution of nonlinear

structural problems.

1.2 NONLINEAR ANALYSES

The evolution of the procedures for handling material and geometrical nonlinearities

by the finite element method has followed two separate and distinct paths. This has been

possible because the formulation of one type of nonlinearity does not depend on the other

and their effects can be included independently.

1.2.1 Nonlinear Material Behavior

Two successful techniques have been used to include the effects of time-independent

isothermal, small strain plasticity behavior. Both are based on the incremental theory of
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plasticity which has more physical meaning than the deformation or total strain theory. The

classical approaches to solving plasticity problems were primarily restricted to using the defor-

mation theory, but this is no longer necessary.

The first approach for solving plasticity problems numerically takes advantage of the

analogy between plastic strain and body forces first recognized by llyushin [I I *. The total

strain is decomposed into the elastic and the plastic portions. Element stiffness matrices are

computed on the assumption of full elastic behavior in the element while the plastic strains

are converted to equivalent pseudo forces at the nodes. The plastic strain increments used in

the plastic load vector are those that were computed in the previous increment. Applications

of this approach are described by Armen et al. [21 and Argyris et al. [3].

The second approach used to incorporate inelastic material behavior is the tangent

stiffness method. This is the formulation that is used in the present study and will be de-

scribed in detail subsequently. Briefly, the element stiffness matrices are recomputed at each

load step by using the current transformation of total strain increment to total stress increment.

The important difference to note between the above two approaches is that in the

initial strain method, element stiffness matrices are computed only at the beginning of the

analysis whereas for the tangent stiffness method, they have to be computed at each load

increment. Thus, if only inelastic material is being studied and it can be safely assumed that

the displacements will remain small, the initial strain approach is found to be much more

economical. However, if nonlinear geometric behavior must be incorporated in the analysis,

the usual procedure has been to recompute element stiffness matrices at each load step. Thus

there would be no particular advantage in using the initial strain approach. However, we

shall discuss this point later.

1.2.2 Large Deformations

Mallet and Marcal [41 have described the three alternative formulations that have been

used in the past for solving geometric nonlinear structural problems by the finite element

stiffness method. The first approach seeks a displacement state which minimizes the total

potential energy. The second method is a direct one where the equilibrium equations are

solved for the desired displacements. Since these equations are nonlinear, such techniques as

the Newton-Raphson, or modified Newton-Raphson, method have been used. The final and

most popular approach is the linear incremental method. The equilibrium equations are

linearized in each increment of loading to obtain stiffness matrices which are dependent on

the current state of the structure. This is the approach used here and will be described in

detail.

It is important to note that the above description of approaches for solving nonlinear

geometric problems is the first line classification of the available methods. That is, the three

approaches are fundamental and any solution procedure is applied to the total potential

*Numbers in brackets designate references listed on page 94.
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energy, tile nonlinear equilibrium equations, or the incremental equations obtained by

linearizing the equilibrium equations.

The wide popularity of the linearized incremental formulation is apparently due to
its computational advantage over the other two formulations. Efficient linear equation solvers
have been developed and can be easily applied to the linearized formulation. Moreover, the
incremental formulation allows the straightforward inclusion of constitutive relationships which
are path dependent.

The development of a correct linear incremental formulation did not come easily.
Martin surveyed the progress up to 1965 at the first Wright-Patterson meeting on matrix

methods [51 and provided a derivation which helped to clarify matters. Since then, the
formulations have stabilized and the correct forms are understood quite well.

The early derivations of the incremental formulation were based, more or less, on
intuitive approaches where equilibrium was examined at individual nodal points by using local

coordinate frames which translated and rotated with the deformation of the structure. The
result was that the derivation of the geometrical or initial stress matrix for the same element
varied from author to author. Martin pointed out these inconsistencies and derived the

correct formulation for the initial stress matrix for several elements by using an initial con-
figuration reference frame. However, Martin truncated the expressions, dropping terms which

proved later to be significant.

If the Lagrangian description is used in the derivation, as was done by Martin, it was
determined later that an additional matrix, termed by Marcal [6], the initial displacement
matrix must be included in the stiffness equation. Marcal showed the importance of includ-
ing this additional matrix and presented a formulation for its derivation.

Hibbitt, Rice, and Marcal [7] included the effects of following loads in the Lagrangian
formulation by introducing the initial load matrix. This term was later derived by other
investigators, e.g., Oden and Keys [8], but apparently its effect has not been determined

because of the awkwardness of introducing the terms.

The most recent addition to the incremental stiffness equation has been the equilibrium
correction term, apparently first introduced by Hofmeister, Greenbaum, and Evensen [9]. A
formulation was introduced later by Stricklin et al. [10]. It will be shown subsequently that
the term is needed because the pointwise equilibrium requirement within the element is not
satisfied. The addition of the term in the linearized incremental stiffness equation can be
viewed as including the zeroth term in a Taylor expansion as opposed to dropping the term in
a simple Euler integration.

Hibbitt [ 111 pointed out that when the equilibrium correction term is included in
the linear formulation, care must be taken to ensure that the incremental stresses are summed
properly. He showed the importance of using the expression for strain (which is quadratic in
the computed incremental displacements) in calculating the incremental stresses. Otherwise,

the equilibrium correction term obtained by using the linearized formulation can give very

poor results.
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1.3 GENERAL SHELL FINITE ELEMENTS

The application of the finite element method to shell structures occurred early after

the original development of the method; see Greene et al. [121. This was a natural applica-

tion since solutions for a large number of practical problems could be obtained only by some

other numerical means such as the finite difference method. These early applications used

flat plate elements to model the curved surface; these proved to be adequate if one was will-

ing to pay the price for inordinate amounts of computing time. No known attempts have been

made to apply these flat elements to nonlinear shell problems, and that is just as well since

the results would probably have been disastrous.

The previous application of flat plate elements to shell problems revealed that the po-

tential for solving very difficult problems was there [13, 141. It remained to improve the

method so that it could be applied with reduced computing time and cost and to other than

linear elastic problems. The most logical improvement needed was the development of an

adequate curved shell element with reasonable convergence characteristics. Unfortunately,
this proved not to be easy. Although elements have been developed that are certainly more

than adequate, there is still no one curved shell element that is accepted universally.

Gallagher [15] has outlined the four difficulties that have impeded the derivation of
curved shell elements:

a. The choice of an appropriate shell theory - both shallow and nonshallow shell

theories have been used. The choice of a particular shell theory should be preceded by the

decision on whether to compute element stiffnesses in local element coordinates or in global

coordinates. A direction that is often taken is to use shallow shell theory and then compute

individual element stiffnesses in global coordinates, that is, element displacements and strains

are in terms of global coordinates. This limits the application, then, to shells that are reason-

ably shallow and thus restricts their application. On the other hand, nonshallow shell theory

can cause other problems because of the degrees of freedom used for the element. These
problems arise when branched shells are being studied.

b. Description of the geometry of the element - depending on which shell theory is

used, various geometrical quantities are required in the strain-displacement relationships.

Curvatures are usually required but not always. Few investigators have recognized the im-

portance of having these geometric quantities as accurate as possible. The approaches have

been varied, but one feature seems common to most developments that have been reported

previously. Along with assuming a certain displacement distribution in the element, the sur-

face is taken to be some polynomial form with undetermined coefficients. The values of

these coefficients are determined by evaluating geometric quantities within the element and
on the boundary. The form of the polynomial can be determined uniquely taking a sufficient

number of these points, depending on the order. There apparently has been only one report

of an investigation being conducted to determine the magnitude of errors that are introduced

by taking the above approach [16].
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c. Representation of rigid body modes of behavior - many of the elements that have

been developed to date are seriously deficient in that the assumed displacement patterns do

not include all rigid body modes. The result is that strains are induced when the element

undergoes a rigid body rotation or translation. This problem is usually associated with ele-

ments that are represented in curvilinear coordinates where rigid body motion is represented

only by a coupling of the individual displacements.

d. Satisfaction of requirements related to continuity of displacements - to achieve

this, the u, v, and w displacements must be represented by the same order of ploynomials.

For flexure requirements, the first derivative of the displacements across element boundaries

must be continuous. The early applications of flat plate elements did not satisfy either of

these requirements but could be achieved in the limit as the grid pattern was made finer.

There has been an extensive development of curved shell elements for axisymmetric

and arbitrary shells [16-35]. The various approaches can best be described by discussing

representative examples; the remaining elements are variations on these basic types.

One of the more sophisticated elements developed to date is that by Argyris and

Scharph [ 17]. They used fifth order polynomials to develop a triangular element with 18

degrees of freedom at each vertex node and three degrees at each midside node. The formu-

lation for the element is derived in triangular surface coordinates. The particular form of

differential geometry is derived for determining the metric of the undeformed and deformed

surface. These are used to obtain the strain displacement relationships. The authors report

that the element satisfies continuity requirements and that no strains are induced in the ele-

ment under rigid body motion.

The triangular element developed by Dupuis [18], based on a previous formulation by

Dupuis and Goel [19], has been used for a wide range of practical applications. The element

has nine degrees of freedom at each node, and third order Lagrange polynomials are used to

interpolate the displacements within the element. The accurate shell theory due to Koiter

[36] and Budiansky and Sanders [371 is used for the strain displacement expressions. This

element satisfies the continuity and rigid-body strain requirements.

The elements that probably have received the most attention are those developed by

Zienkiewicz [20, 21 ]. The elements were originally reported for applications to thick shells

and have since been specialized for anlayses of thin shells. Both triangular and quadrilateral

shapes have been developed. The elements evolved from the original isoparametric concept

where geometry and displacement modes are assumed to have the same functional form. The

superparametric concept is used for this particular application; the geometry of the element is

defined by higher order polynomials than those used in defining the displacements within the

element. No shell theory, as such, is used in developing the element. The basic three-

dimensional state of stress is assumed to exist throughout the element except that the normal

stress through the thickness is set equal to zero to conform to shell behavior. There are five

degrees of freedom at each of the nodes which may be arbitrary in number, depending on the

order of the polynomials assumed for the displacements. The rigid-body condition is

6



satisfied by the element. There has been some difficulty in applying the element since it has

a tendency to be too stiff. This problem has been circumvented by arbitrarily reducing the

number of points used in the numerical integration procedure for computing the element stiff-

ness matrix.

Appropriate shell theory has been employed to develop elements that include deforma-

tion due to transverse shear. This approach was used by Key and Beisinger [ 161 to develop a

quadrilateral element where the shell theory is that given by Washizu [381. The advantage of

this approach is that the continuity requirements demand only that u, v, and w be continuous.

The usual shell theory requirement that normals must remain normal is relaxed, and thus the

first derivative of the normal displacement w does not have to be continuous across element

boundaries. This approach makes the selection of displacement interpolation polynomials

easier and Hermite polynomials are used. There are seven degrees of freedom at each of the

four corner nodes. A mapping similar to that due to Zienkiewicz is used, and the element is

limited to shells of revolution. It does not satisfy the rigid-body mode requirement.

The approach of using shallow shell theory in global coordinates is given by Cowper

et al. [221. The strain displacement expressions of Novozhilov [391 are employed in the

element along with cubic distribution of the displacements in the surface of the shell and

fifth-order polynomial distribution for the normal displacement. There are twelve degrees

of freedom at each node. The surface of the shell is assumed to be quadratic in form, this

dictates that the element must have constant curvatures. The primary disadvantage of this

method is that complete shells cannot be studied.

A variation on the above approach was also presented by Cowper et al. [23]. The

element was assembled in a global system on the shell surface, that is, the element stiffness

was first computed in its own local system and then rotated on the shell surface to line up

with the Gaussian coordinate system. This is different from the first developed where the

elements were rotated to line up with the coordinate system in the projected plane of the

total shell. Thus this second approach removed the restriction that only parts of complete

shells could be studied. The same degrees of freedom were used as those reported for the

initial Cowper approach [22].

The development of an additional triangular shell element was also reported by Cowper

et al. [231. Few details were given, but the development followed previous approaches where

the degrees of freedom and stiffness were expressed in terms of the curvilinear coordinates in

the shell surface. In all, 36 degrees of freedom are used in the element with 12 at each of

the three nodes. The authors state that exact rigid-body modes are not obtained with the

element and that this point has often been overemphasized. This is contrary to a majority of

the research reported previously; see Gallagher [ 15].

The method of using shallow shell equations in local element coordinates and trans-

forming to the surface was also reported in Strickland and Loden [241 where a triangular

element is developed. The primary difference between this work and that reported by Cowper

et al. [23] is that the order of displacement functions is less and thus results in fewer degrees

7



of freedom at the nodes. Linear functions are used for the membrane displacements and a cubic

function for the normal displacement. There are a total of 15 degrees of freedom, five at each

node. As expected, the convergence rate to the correct solution for increasing number of ele-

ments is less than that reported in Cowper et al. [22 and 231.
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CHAPTER 2

GENERAL INCREMENTAL FORMULATION

We turn now to the derivation of the incremental formulation that will eventually be

implemented by the finite element method. Although we will show how the formulation can

be applied in terms of finite elements, it is not limited to this method but could be imple-
mented by another numerical approach such as the finite difference method. The derivation

in the beginning will be independent both of the magnitude of deflection or strain and of the

constitutive relationship between stress and strain. The limitations on material behavior will

be described later.

2.1 DEFINITION OF STRAIN AND STRESS

The motion of a point in a body is described by a one-to-one mapping of the type

xi = Xi + ui (2.1)

where Xi is the initial position of the point and xi is its position at a later time. For our work

here, we will say that they are both in the same Cartesian coordinate system. The amount that

the point moves is ui. There are two classical methods by which the motion is described, the

Lagrangian, or material description, and the Eulerian, or spatial description. In the first,

various quantities are described in terms of X as the independent variable whereas in the

second, x is the independent variable.

For the measure of strain, the square of a line segment before and after deformation is

required. These are given respectively by

dS' = dXidXi = 5ij dXjdX 3
laxi \/ ax. (2.2)

ds2 = dxidxi =- dX - dXk\ax. J)/\ axi

where 5ij is the Kronecker delta and the summation convention is used with the range from

1 to 3 over the indices. Thus the expression for strain becomes

ds 2 - dS2 = dxidxi - dXidXi = 2eij dxidxj = 2Eij dXidXj (2.3)

The symbol eij Js the Eulerian or Almansi strain tensor and Ei is the Lagrangian or Green strain

tensor.
In the later numerical implementation of the theory, it is more convenient to work with

the material description and thus the Green strain tensor will be applied. Using equations

(2.1), (2.2), and (2.3), the expression for Green strain becomes

9



Eij = l/ 2 (ui,j + uj,i + UkJiUkj) (2.4)

where the comma indicates differentiation with respect to the material independent variable X.

Since the derivation and application of the methods to follow will be performed in the
material coordinates, it will be necessary to have a stress measure which is in terms of the

undeformed configuration. This will be the Kirchoff, or Piola, stress tensor.

We consider a force vector df acting on an element of area in the strained configura-

tion and want to assign a correspondence rule between that vector and one, dF, acting on the

element of area in the unstrained configuration. In component form, we write the Kirchoff

rule for the correspondence [40] as

aX.
dF. =x df. (2.5)ax j J

which is the same form as that for transforming from spatial to material coordinates.

Using equation (2.5), we can obtain the result that we actually need, i.e., the relation-

ship between true or Cauchy stress and the nominal or Kirchoff stress. The derivation is

given in many continuum mechanics text books and will not be repeated here. The transfor-

mation of Cauchy stress to Kirchoff stress is

P •xk ax1 X kQ (2.6)
'iP x ax 2  k

where Sij is the Kirchoff stress, OkQ is the Cauchy stress, p is the density in the deformed

configuration, and po is the density in the original configuration. The Kirchoff stress tensor

is symmetric. This can be seen above since the Cauchy stress tensor and the transformation

are symmetric.

2.2 PRINCIPLE OF VIRTUAL WORK - INCREMENTAL THEORY

The method under consideration for solving the nonlinear problems will have to be

incremental, i.e., obtained in finite steps, since we will be including inelastic material effects

which are path dependent. The derivation given will be independent of material properties

but can be applied to bodies which undergo plastic deformation, as will be described. Al-

though we will eventually be considering problems that are characterized by small strains, the

following derivation is not subject to that limitation.

The three configurations in the deformation path that are of interest are shown in

Figure 2.1: the original undeformed reference configuration, the intermediate deformed con-

figuration, and the current deformed configuration for which the virtual work equation will

be written. The intermediate configuration is taken as the one just before the current

configuration.

10
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Figure 2.1 - Original and Deformed Configurations
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Over the surface of the body, there are specified displacements and surface tractions, F, in

terms of the original undeformed reference configuration. There are also body forced, P,

expressed in terms of the density and volume of the undeformed reference configuration.

The virtual work equation is now written for the current configuration

f(sij+ ASij)6(AEij)dV -f( p0 Pi + po APi)6(Aui)dV
v /"s (2.7)- (Fi + AFi + AG Fi)6(Aui)dS = 0

S

which is referenced to the original undeformed state, i.e., all integrals are performed over that

configuration and the conditions stated above with respect to loads hold true. The symbols

Sij and Eij have been defined previously and are the Kirchoff stress tensor and the Green strain

tensor, respectively. The prefix A indicates the change in the quantity that occurs in the body
in going from the intermediate deformed configuration to the current configuration. The

difference in the surface loading caused by this change is indicated by the symbol AGFi. The

subscript G means that the change in force is associated with the change in geometry.

In writing equation (2.7), it is assumed that the body is in equilibrium in the current

configuration under the body forces, the external applied surface tractions, and the specified

displacements. The body is then assumed to execute an infinitesimal virtual displacement

6(Au) from the equilibrium configuration without violating the specified displacements. It is

important to note that the variation is only on the displacements with the prefix A since the

displacements occurring up to and including the intermediate deformed configuration just be-

fore the current configuration are assumed to be constants in the equation.

The value of the Green strain that occurs in the current configuration is

Eij = 1/2 (ui + Aui),j + 1/2 (uj + Auj),i + 1/2 (um + Aur),i (um + Aum),j (2.8)

with the variation resulting from a variation in Aui given by

6(AEi)i 5Eij = 1/2 6(Aui),j + 1/2 6 (Auj),i + 1/2 umi 6(Aum),j + 1/2 umrj 6 (Aum),i

+ 1/2 (Aumr),i 6(Aum),j + 1/2 (Aum),j 6 (Aum),i (2.9)

Now, substituting equation (2.9) into equation (2.7) and recognizing the symmetry of

the strain tensor, we may write

P s + AS)[ 1/2 (6(Aui),j + 6(Auj),i) + umi 6 (Aum),j + (Aum),i 5(Aum),j dV

J (po Pi + po A Pi)6(Aui)dV f(Fi + AFi + AGFi)6(Aui)dS 0(2.10)

V S
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This equation can now be rearranged to obtain

(1) (2)J ASN[ 1/2 (S(Aui),j + 6(Auj),i + umi b(Aum),jI dV +f Sij(Aum),i S(Aum),j dV

V V

(3) (4) (5)

+fASij(Au),i 6(Aum),j dV,-f AGFi6(Aui)dS f(poP1 + APi)8(Aui)dV (2.11)
V S V

(6) (7)
+ AFi)6(Aui)dS -I Sj[ 1/2 (5(Aui),j + 5(Auj),i) + Urn, i6(Aum )j I dV

S v

At this point it is convenient to discuss the form of equation (2.11). We will substitute

shortly for an increment of stress in the first and third integrals and eliminate the virtual dis-
placements when the above equation is cast into the form for the finite element method. The
present form of the equation is such that we may compare the various terms with the linearized

incremental formulations that have been derived by other investigators.

Except for term 3, each of the above numbered terms in equation (2.11) is an equiva-

lent term of the linearized incremental stiffness equation of the finite element method. Term I
can be shown to be the small displacement plus initial displacement matrix due to Marcal [6].

Term 2 is the initial stress or geometric stiffness matrix [51. Term 4 is the initial load matrix

of Hibbitt et al. [71 and Oden and Keys [8]. Terms 5 and 6 are the body force load plus

increment of load and the surface load plus increment of load, respectively. Term 7 is the
equilibrium load correction term of Hofmeister et al. [9] and Stricklin et al. 110]. Apparently,
term 3 has never been included and applied in previous incremental nonlinear finite element

analyses.

When we substitute for an increment of stress in equation (2.11), we will obtain a form

of the incremental equations that is altogether different from the linear form that has been

used by previous investigators. It is primarily term 3 although that is lost in the linearization

process.

Before we go on, note one further point concerning equation (2.11). The equilibrium
load correction term, term 7, can be written as

fsij 6(Aui),j + Sij umii (Aum),j dV =fsij (6im + Um, i)8(Aum),j dV;

V V

but

.= +uXmi = im M,i

13



So term 7 becomes

fsij xmi 8 (AUM),j dV

V

Now consider

f(Sij Xm i(Aum)),jdV = (Sij Xm, ,j (Aum)dV+fSij Xmji (Aum),j dV

V V

and by the Gauss integral theorem

flsij xmi i 8(Aum)],j dV=fSij Xm'i Pj(AUm)dS

V S

where vj is the component of the unit normal to the surface. Thus, term 7 may be written

faixm' i (AUm),jdV=-f(Sjx mij),j 5(AUm)+fSij xm,ivj (Aum)dS

V V S

We now take term 7 and add it to the first part of term 5 and the first part of term 6;

regrouping and paying particular attention to the signs, we can write the expression

fi (Sij xm, i),j+ po Pm ] (Aum)dV +f(- Sij xm,i vj + Fm)5(Aum)dS

V

At each step of the loading, we assume a displacement pattern which results in an assumed

strain and stress distribution. If this resulting stress pattern satisfied the equations of equilib-

rium at each point in the body and at the surface, we could write the following equations

(expressed in the Lagrangian description)

(Sij xm i),j +Po Pm = 0

Si., x = (2.12)

The point is that these conditions are not, in general, satisfied and that is why the above-

considered terms have to be included in equation (2.11). This close examination of the virtual

work equation points out the necessity of including all of the terms considered. It is often

stated that equilibrium is not satisfied at any given load level in the incremental solution to

nonlinear problems. Specifically, it is the pointwise equilibrium requirements of equation

(2.12) that are not being satisfied.

We now propose to rearrange equation (2.11) into a form which will allow a different

solution method to nonlinear incremental problems. This is shown as follows

14



fJASij [ 1/2 (6(Aui),j + 6(Auj),i) + (urn, i + Aum, i) (Aum)'j I dV

V

=fipo Pi + po A Pi) 5(Aui)dV +f(Fi +AFi+AGFi)S(Aui)dS (2.13)
S S

ISij 11/2 (S(Aui),j + 6(Auj),i) + (umi + Aur, i) b(Aum),j I dV
V

The first difference to be noted between equations (2.11) and (2.13) is that term 3 of equation

(2.11) is put into the first term of that equation. Secondly, the initial stress term, term 2, of

equation (2.11) is moved to the right side and put into term 7. Finally, the initial load term

of equation (2.11) is put into term 6 of that equation.

The initial load term of equation (2.11) is a function of the change in area which is a

function of the change in displacements that occur in each increment. When it is kept on the

left side and its contribution added to the stiffness matrix, the matrix is nonsymmetric and

causes problems in the solution process. Thus it is more convenient to move the term to the
right side and include its contribution as part of the iteration on displacements that is per-

formed to reach convergence. This is suggested in Hibbitt [ 11].

We now complete the formulation of equation (2.13) by first expressing an increment

of stress in terms of an increment of strain by the constitutive relationship
ASi. = Dijab A Eab (2.14)

where Dijab is a known function of the current state. As described previously, both the stress

and strain are measured with respect to the undeformed configuration. In writing equation

(2.14), no limitation is put on the magnitude of strain. We ask only that the relationship be-

tween stress and strain remain linear. If the material goes plastic, then we will require the
strain to be small and will use the constitutive relationship derived in the next chapter.

The increment of strain can be computed by

AEab = 1/2 (ua + AUa),b + 1/2 (ub + AUb),a + 1/2 (Urn + Aum),a (urn + Aum),b

- 1/ 2 (ua,b + ub,a) - 1/2 Um,a um,b

where the increment of strain is that in the current configuration minus the strain in the

intermediate state just before the current state. The above reduces to

AEab = 1/2 (Aua,b + Aub,a) + 1/2 um,a Aun,b + 1/2 Aum,a urn,b + 1/2 Auma Aum,b (2.15)

After recognizing the symmetry in a and b, the expression for an increment of stress

now becomes
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ASN = Dijab[ 1/ 2 (AUab + AUb,a) + Um,a AUrn,b + 1/2 Aura,a Aum,b] (2.16)

Now substituting equation (2.16) into the left side of equation (2.13), we obtain

fl(1
iiab[ 1/2 (Aua,b + AUb,a) + (urn,a + 1/ 2 Aum,a)Aum,b]

V

[1/2 (5(Aui),j + 6(Auj),i) + (un,i + Aun,i) (Aun),j]

(2) (3), (2.17)
P1 + p0 APi) 6(Aui)dV (Fi+AFi + AG Fi) 6(Aui)dS

V S
(4)

Jsij 1/2 (5(Aud),3 + S(Auj),i) + (urni + Aum, i)6(AUm),j I dV

V

which is the final form of the virtual work equation. Note that the left side of the equation,

which corresponds to the stiffness matrix, is nonsymmetric. Since we will want to use the

efficiency of a symmetric equation solver, it will be convenient to separate the term into a

symmetric part and a nonsymmetric part. This will be described subsequently.

2.3 FINITE ELEMENT FORMULATION OF THE EQUILIBRIUM EQUATION

Equation (2.7) was written without mentioning the origin and orientation of the

material reference frame. It is often convenient to have a reference frame for each individual

element when the finite element method is used. Thus, the previous derivation could be

thought of as being done for a single element with its own coordinate system. Eventually we

will want to be able to assemble all of the elements into a single system. This causes no

problem since all of the quantities in equation (2.7) can be transformed easily because they

are tensor quantities. Thus we will not make a distinction between the local element system
and the common global system. This is necessary only when we start to apply the method to

a particular problem.

The finite element stiffness approach is based on the approximation of representing the
displacment at any point in an element in terms of polynomials. For our application here, the

polynomials will be written in terms of the material coordinates. The coefficients in the poly-

nomials are represented as linear combinations of the displacements that occur at the nodal
points. Thus we seek a relationship where the displacement at any point in the element can

be determined in terms of the displacements that occur at the nodes.

To determine the relationship between the displacements at the nodes and interior
points, we start by selecting the polynomial form that will be used for the three u, v, and w

displacements at the interior points. We represent this by

ui = rij aj (2.18)
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where rij is an array of polynomial terms and aj are unknown coefficients. The range on i is

one to three and the range on j is from one to the number of nodal points in the element

times the number of displacements, i.e., degrees of freedom at each nodal point.

Next a set of generalized displacements is introduced [41 1 such that:

a. The connection of one element to another element along a common boundary is

expressed by equating each of the respective generalized displacements pertaining to the

boundary.

b. The displacement field along the common boundary is uniquely defined in terms of
the generalized displacements that occur at the nodal points on the boundary and thus ensures

the continuity of displacements across the boundary.

c. The number of generalized displacements is equal to the number of unknown

coefficienits in equation (2.18).

The set of generalized displacements is expressed by

Vi = Rij aj (2.19)

The set of generalized displacements vi is composed of the displacements ui and, in general,

their derivatives. Thus, the terms of the array Rij are composed of the terms of rij plus terms

created by taking the derivatives of the terms with respect to the material coordinates. The

introduction of the generalized displacements sets the form of generalized forces which evolve
in the process when the consistent loading vectors are derived.

An expression is required for the coefficients aj in terms of the generalized displace-

ments at the nodes. This is obtained by first substituting the coordinates of the nodal points

into equation (2.19) to obtain a set of equations equal in number to the number of coeffi-

cients aj:

vi = Rij aj (2.20)

where the bar indicates that the equations are written at the nodal points. This set of equa-

tions is then solved to obtain

aR = jl v = Aij vj (2.21)

and is the desired result which expresses the coefficients of the polynomials of equation (2.18)

as linear combinations of the generalized displacements that occur at the nodes. Each term in

Aij is a constant. Substituting (2.21) into (2.18), we obtain

Ai = rij jk Vk (2.22)

the displacements u, v, and w at any point in the element expressed in terms of the generalized

displacements at the nodes.
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Using equation (2.22), we may now obtain the finite element stiffness equation from

the virtual work equation (2.17). But first we need the following expressions

ui,£= rijk A.kVk (2.23)

Aui,Q = rijk AJk AVk (2.24)

6 (Aui,k) = rij,2 A k 6 (AVk) (2.25)

each of which is obtained from (2.22). Equation (2.25) is the result of rij being a function of

the initial position only.

Substituting (2.23) through (2.25) into (2.17), the following is obtained for each of

the terms of that equation

Term I

fDijabl 1/2 (rae,b +rbea)+(Vd + 1/2 A7d)rhcarhebAcd]

v (2.26)
[1/2 (rin + rjn,) + ( + v)rmkrirmnjAkQ] dV AnqAefAVfb(AVq)

Term 2

f(PoPi+p oAPi) rijdVAjq 6(Avq) (2.27)
v

Term 3

f(Fi+ AFi + AGFi)rijdSAjq5(Avq) (2.28)

Term 4

fsij 1/2 (rinj + rin,i) + (£ + AV2)rmk,irmn,j AkQI dVAnq 6 (AVq) (2.29)

V

The virtual displacements, 6 (AYq) of the nodal points are arbitrary and thus can be eliminated.

In other words, since they are arbitrary, an equation in just the coefficients of the virtual dis-
placements must hold true. The result of equating the coefficients is the stiffness equation.

An important point to remember at this stage is that the virtual displacement of a
nodal point generalized displacement may be thought of as causing virtual displacements with-
in all of the elements that are connected to the nodal point. Thus all of these elements are
represented in the stiffness equation that is written to eliminate the generalized virtual
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displacements at the nodes. We noted earlier that the equations may be transformed easily -

so there is no problem in writing an equation in a single coordinate system in the coefficients

of the virtual displacements.

The matrix form of the stiffness equation can finally be obtained by letting the first

bracketed part in (2.26) be represented by the matrix [BI] and the second bracketed part by

the matrix [B2]. The resulting matrix form is

([AItJ[B2T [DI B[1 ldV[A])1 A-V [A] YtT rIT(Po I Pj+Po JAPI )dV

v 
(2.30)+ [A)Tf[r]T( I Fj + I{AFt + I AGF I )dS - [A]ý"[B32]T JS} dV

S V

where the stress in (2.29) has been written as a column vector. (The change in surface trac-

tions due to a change in geometry will be derived later for the quadrilateral element.) The

first two terms on the right are the generalized forces; their form is set by the choice of

generalized displacements.

In forming the stiffness matrix and the equilibrium correction term (the first and last

terms of (2.30), respectively), it is noted from (2.26) and (2.29) that the increment of dis-
placement that occurs in going from the intermediate deformed configuration to the current

configuration is required. Again, these are the quantities denoted by AV . Since the increment

of displacement is the fundamental unknown, some method is required to estimate the values

to be used in forming each of the terms. This estimate is obtained by a linear extrapolation of

the increment of displacements that occur in the previous increment. Thus, if the load steps

are equal, for example, then the estimate of the displacements is set equal to those that

occurred in the previous increment. An iteration is carried out at each load step to reach con-

vergence (within a given tolerance); the details will be described later.

As noted previously, the stiffness matrix derived above is nonsymmetric. To circum-

vent the problem of having to solve a nonsymmetric set of equations after the elements are

assembled into the common global system, the stiffness matrix is decomposed into a symmetric

and skew symmetric part, that is,

K i = 1/2 (Kij + Kji)+ 1/2 (Kij - Kji) (2.31)

where the first term on the right is the symmetric part and the second is the antisymmetric

part. Thus, simplifying the notation of equation (2.30) and putting the nonsymmetric part of

the stiffness matrix on the right side, we may write

[K]s SAVI= IP"+ IAPI + JF} + IAF} + IAGF- IE [K] A IA~est (2.32)

The subscripts S and A respectively indicate the symmetric and antisymmetric parts of the
stiffness matrix. The symbol E stands for the equilibrium correction term and the remaining
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terms are self-explanatory. The nonsymmetric part of the stiffness matrix is now taken as an

equivalent set of forces by using the estimated displacements that occur in going from the

intermediate configuration to the current configuration.

2.4 INITIAL STRESS PROBLEMS

We close this chapter with a brief account of how the above derivation stands with
respect to previous derivations; the closest are those that evolve from considering the incre-

mental problem as an initial stress problem.

The initial stress problem has a long history that dates back to Cauchy [42]. More
recently, Green, Rivlin, and Shield [43] and Murnaghan [44] have studied the problem. The

formulation is presented in the textbook by Washizu [38].

Finite element investigators who have used the initial stress approach include Felippa

[45], Hofmeister, Greenbaum, and Evensen [9], Murray and Wilson [46], Bergan [47], and

Yaghmai [481.

Briefly, the approach that seems to be common to all of the above, except that of
Hofmeister et al. [9], is to write the virtual work equation for two successive configurations,

take the difference in the two, and then linearize the result to obtain incremental stiffness

equations. Various coordinate systems are used in the derivations.

The approach of Hofmeister et al. [9] is to use the intermediate deformed configura-
tion shown in Figure 2.1 as the current reference frame and to consider this as the initial state
with the body subject to initial stress. Thus, the method involves updating coordinates and

also transforming stresses to a common system so that they may be added. The importance

of this last point was brought out by Nemat-Nasser and Shatoff [49] who derived an incre-

mental approach and implemented it with the finite difference method.

The two primary points to be said for the derivation presented here are, first, its

simplicity and, second, the nontruncation of terms. A linearization process is imposed, as

discussed in the previous section, but the equations are complete and answers can be obtained

as accurately as desired by using iteration. Moreover, as will be shown later, even without

iteration, the formulation seems to give better results than have been obtained by previous

incremental formulations.
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CHAPTER 3

CONSTITUTIVE LAWS OF PLASTICITY

This chapter reviews the basic theory of plasticity required for the stress-strain rela-

tionship. Many publications may be consulted for a more extensive treatment, e.g., the text

by Hill [50], the work of Koiter [51], and the extensive review by Naghdi [52]. Here the

description will consider only small strain problems which may be assumed to be independent

of temperature and time.

3.1 BASIC ASSUMPTIONS - INITIAL YIELD CONDITION

The state of stress is discussed in terms of a general nine-dimensional stress space. In

this space there is an envelope which defines the limit of elastic behavior of a point within a

body. As load is slowly applied, the state of stress at a single point in the body is defined by

a trajectory which moves in the stress space. There is such a trajectory for all points in the

body. As long as the trace of the trajectory moves within the envelope and does not touch

the surface, the material at the point under consideration does not undergo any plastic defor-

mation. Only trajectories that are within and on the boundary of the envelope have any

meaning.

The envelope is referred to as the initial yield surface; it can be shown to be convex

and contains the origin of the stress space. On the basis of experimental data and the be-

havior of inelastic deformations, the shape of the surface is considered to be limited to several

general configurations. The initial state of the material is usually assumed to be isotropic and

shows no preferred direction with respect to stress. Further, it is known that the initial yield

is primarily brought about by shearing stresses. Bridgman [53], among others, has shown

experimentally that the yielding is primarily independent of hydrostatic pressure. It is there-

fore convenient to express the envelope or yield function in terms of the invariants of the

deviatoric stress tensor

0,j = aij - 1/3 6ij k (3.1)
ii 1J ukk

where the invariants are

Jl =a 0

J2 = 1/2 oa. Oj (3.2)

J 1/3 ij jk Oki

Thus, the initial yield function may then be expressed as

f f(J 2, J3 ) (3.3)
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Many functions have been proposed for the initial yield condition but two have become
the most reasonable for simulating experimental data. The first is the Tresca function

expressed in terms of maximum shearing stresses. It is assumed that plastic flow can occur at

the point where the maximum shearing stress reaches the yield stress obtained in pure shear.

The second yield function is that due to von Mises and is the one that has been applied in the

work here. In formulating the function, von Mises ignored the effects of the invariant J 3 and

expressed the condition by the equation

f(J2)= J2- 1/3 o2 = 1/2o oa'j- 1/3 a2 =0 (3.4)

where oo is the yield stress obtained in a simple tension test. A convenient geometrical inter-

pretation of the function is obtained when it is plotted in principal stress space. It turns out

that the yield surface, or envelope, is a circular cylinder with the axis equally inclined to the

three principal stress axes. The cylinder has infinite length.

3.2 LOADING CRITERIA

Once the state of stress at a point is such that plastic flow can occur, a criterion must

be established to determine whether it actually takes place. Assume now that the yield

function for the general case becomes a function of the plastic strain eJ, that is,

f= (oij, eJ) = 0 (3.5)

and the function no longer defines just initial yield but also includes additional information

and is now called the loading function.

Consider the differential

df- of +-" der. (3.6)
aij dij aeýj

at a point where equation (3.5) is satisfied. Then df<0 implies that f<O and is the condition

for unloading from a plastic state to an elastic state. An additional requirement for unloading

is that no change can occur in the plastic strain. The terms neutral loading and loading can be

defined by using a similar argument. In summary,

During unloading: ' dui <0, f=0 (3.7)auij i

• af

During neutral loading: a doij = 0, f=0 (3.8)

During loading: -- doij >0, f=0 (3.9)
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A geometric interpretation can be associated with each of the above since the loading surface

is closed. For unloading, the stress increment vector is directed inward; during neutral loading,

it is tangent to the surface, and during loading, it is pointed outward.

3.3 WORK HARDENING - THE DRUCKER POSTULATE

When a uniaxial test specimen exhibits work hardening, the stress is a monotonically

increasing function of increasing strain. A generalization to combined stress states is required.

This generalization is attributed to Drucker and is fundamental in the theory of plasticity

since all of the information required for the stress-strain relationships can be derived by using

the concept. Drucker stated that if a body in equilibrium has its stress state changed con-

tinuously by an external agency such that the final stress state coincides with the original

one (i.e., a closed cycle), then the work done by the external agency is not negative.

Assume that a body is in an equilibrium state of stress aij and strain eij. Then, if

small surface tractions are applied to the body, small increments in stress, doij, and strain,

deij, will occur. Once the loading is removed, all of the elastic strains, de!., will be recovered.

Then the body has experienced work hardening if the following two conditions are true:

during loading;

do.i dei. > 0 (3.10)

and on completion of the cycle,

doij (deij - de) > 0 (3.11)

The quantity in parentheses is the nonrecoverable plastic strain deý and thus the second equa-

tion can be rewritten

do.i deKi > 0 (3.12)

3.4 FLOW RULE FOR WORK-HARDENING MATERIALS

As a consequence of the Drucker postulate, the following three properties of the load-

ing function and inelastic deformations can be obtained.
a. The initial yield surface and all following loading surfaces are convex.

b. At a regular (smooth) point on the loading surface, the strain increment vector
must be directed normal to the surface.

c. An increment of plastic strain must be a linear function of an increment of stress.

Statement a can be shown to be true by considering equation (3.12). If each of the

increments of stress and strain is associated with a respective vector, then equation (3.12)
states that the dot product of the two vectors must be equal to, or greater than, zero. This

means that the angle between the two vectors is less than, or equal to, 90 degrees. In careful

consideration of this, it may be simply stated that there can be no inward dents on the load-
ing surface and thus must be convex at all points.

23



Statement b may be verified by using an argument similar to that given above. The

additional conclusion can be reached that the direction of the strain increment vector is

independent of the direction of the stress increment vector. Statement b may be expressed

mathematically by

d Aaf (3.13)
Ii Aoij

where A is a positive function dependent on stress, strain, and strain history. It is noted that

the function f may be viewed as a plastic potential.

The meaning of statement c can be shown by considering the following. The loading

function must remain zero during loading, i.e., in passing from one plastic state to another

plastic state. This is expressed by

f(o1 , e) = 0 (3.14)

and is what Prager [541 called the consistency condition. Thus, we must have

df = .f d _+_f de~J =0 (3.15)ad dij + aeP i

Now, substituting (3.13) into (3.15) and solving for A, we obtain

A- aukQ (.6
af af

ae j a 1ij

Next the linear relationship between an increment of stress and an increment of strain is ob-

tained by substituting (3.16) into (3.13):

af af
aGkQ aamn

emn af af d~k• (3.17)

ePJ aoij

The relationship is linear since the fractional quantity does not contain the stress increment

vector. This characteristic will be shown subsequently in an evaluation of the factor.

All of the above could be derived by the more general theory developed by Koiter

[51] for loading surfaces with singular points, i.e., pointed surfaces. This generalization is not

required here since the von Mises expression is used for the initial yield surface and subsequent

loading surfaces.
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3.5 SUBSEQUENT LOADING SURFACES - HARDENING RULES

It is necessary to know how the loading surface changes as load is continuously applied
to the structure. Two principal theories have been used to determine this change, the isotropic
rule and the kinematic hardening rule first suggested by Prager [551.

The basic concept behind the isotropic rule is that there is a continuous growth of the
loading surface as plastic loading occurs at a point in the body under study. This is in sharp

contrast to experimental evidence since the theory predicts a negative Baushinger effect. That

is, as a point in a uniaxial test specimen is loaded, say into the inelastic compression range,
and then unloaded and then carried into the tension range, the point at which plastic flow

starts to occur is at a greater tensile stress than if the specimen were first loaded into the

tension range. The equivalent concept is shown in Figure 3.1 in principal stress space. The

important point to note is that the origin of the loading surface remains fixed and the surface
grows with increasing loading.

The kinematic rule is more reasonable since it is in better agreement with experimental
data. The principal idea behind this concept is shown in Figure 3.2. Both stresses and strains
are associated with a displacement (reason for term-kinematic) such that the origin of the

loading surface is allowed to translate while the size and shape of the surface is not allowed
to change. The motion of the surface must be considered in a general stress space with con-
straints being applied for special conditions, for an example, no motion would be allowed in

the third zero principal stress direction for plane stress.

3.6 EQUIVALENT STRESS AND EQUIVALENT STRAIN

The hardening rules for combined stress are related to the simple uniaxial test specimen.
Some measure of stress and strain must be used to make the relationship meaningful. In other
words, given a state of complex stress and strain at a point, what is the relationship between

this state and our experimental data for a uniaxial test specimen?

A definition for equivalent stress is obtained from equation (3.4). This is the require-
ment for first yielding to occur under a condition of combined stress. Thus the effective

stress is

Ue = [3/2 Oaj. ]a (3.18)

and reduces to the stress in a uniaxial specimen when the right side of the equation is written

for that condition.

A definition of equivalent plastic strain is not quite as simple. One approach has been
to define the equivalent strain increment, dep, in terms of an increment of plastic work, i.e.,

dW a = deP (3.19)2e
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Also, we must have

dW, = a de& (3.20)
Ii

which gives

dep = Io/a eij der (3.21)

It was stated previously that hydrostatic pressure has no appreciable effect on inelastic

deformation and thus that there is no change in volume as plastic flow occurs. Expressed

mathematically, this means that the trace of the strain tensor vanishes, that is,

eii = 0 (3.22)

and the deviatoric stress tensor may be substituted for the stress tensor in equation (3.21):

deP = 1/oe a'j deý (3.23)

An explicit expression for the equivalent plastic strain may now be obtained by taking

the scalar product of equation (3.23) with itself obtaining
dep dep = 1/a2 F'. a'. der der (3.24)

By using equation (3.18), the expression for the equivalent plastic strain now becomes

dep = (2/3 deJI der )½ (3.25)

3.7 STRESS-TO-STRAIN TRANSFORMATION

With the above expressions for equivalent stress and strain, we may now look at the

details of each of the hardening rules that we will be considering. In the isotropic-hardening
rule, the change in the loading surface is reflected through a change in effective stress which is

a function of the effective strain, that is, we now have

f = j ep 2  (3.26)
2 (aij)- 1/3 e(ee)

as the expression for the loading function.

At a material point where an increment of plastic strain occurs, equations (3.14),
(3.15), and (3.17) must be true. The derivatives of the loading function with respect to stress

and plastic strain are needed in order to determine the explicit expression for equation (3.17)

for isotropic hardening. Thus, we can obtain the following

af af aJ2 I-=fJ2 a- °'i7 (3.27)
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af af O ae~P a e aeep
- =- 2/3 e e (3.28)

ae ace aepaeP 23 eep aepijee D ij i

The derivative of the loading function with respect to plastic strain is then obtained by substi-

tuting equation (3.21) into (3.28):

e- =- 2/3 De a (3.29)
aeý ae '

Thus, by using equation (3.18), the following becomes the linear relationship for an increment

of plastic strain in terms of an increment of stress:

0 mn 0 k2 amnclkQ
demn = G1 n ,, dukv- dakQ (3.30)

2/3 eep oij eij 4/9 eep e

The linearity of the factor on dakV is now evident since it is a function of only the current

deviatoric stress, the current effective stress, and the current slope of the effective stress-

effective plastic strain curve.

The loading function for the kinematic-hardening rule must be different from equation

(3.26) since the loading surface is now allowed to shift but not to grow in size. Incorporating

these two requirements, the loading function becomes

f=J 2 (aij-aij)- 1/3 u2 (3.31)

The array aij is the shift of the center of the loading surface with changing plastic strain,

that is,

dai. = C dJ (3.32)'3 Ii

where C is a constant factor dependent on the effective stress-effective plastic strain curve. As

before, ao is the yield strength of the material which is obtained in a uniaxial test. The above

form of the kinematic hardening is that proposed by Shield and Ziegler [561.

To reemphasize the difference between equations (3.26) and 3.31), the dependence of

the loading function on the plastic strain for isotropic hardening comes through the change in

effective stress which is a function of the effective plastic strain whereas for kinematic harden-

ing, the change in plastic strain causes the center of the loading surface to shift by the amount

specified by equation (3.32).

Equations (3.14), (3.15), and (3.17) must be satisfied for kinematic hardening as they

were for the isotropic hardening, Instead of equations (3.27) and (3.28), we obtain the follow-

ing two expressions
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-ai =- a (3.33)ao1j a'i a'.1

af =- (3.34)

aeP, ao1j

where

aij = aij - 1/3 5ij akk (3.35)

Substituting equations (3.33) and (3.34) into equation (3.17), we obtain

(aj' - a!j) (amn -a'n)
depn = C-(Ok- aik) (Oj k k) d-a (3.36)

The denominator in the above expression may be simplified since as already stated, the size of
the loading surface does not change and thus we may write

(Oak - ajk) (Ojk -a~k) =2/3 02 (3.37)

Thus, equation (3.36) may be written as

(oaj -a'j) (omn -amn)
depm =2 C 02 daij (3.38)

The problem now is to determine the value of C in the above equation. This can be
done by examining the form of the equation for a uniaxial loading test specimen. Equation

(3.38) becomes

(2/3a -a'l)(2/30ll-a'll) dull
del 1 doll = aue (3.39)

2/3 C 2o

Written for this case, equation (3.37) becomes

(2/3 a,1 -a, 1)(2/3 Ol -a 1 )+(- 1/3 al1 -aý 2 )(- 1/3 al -aý 2 )
+ (- 1/3 0l, 1- aý3) (- 1/3 a, I - aý3) = 2/3 O2o (3.40)

(340

The incompressibility of plastic deformations requires that

'ý = 'ý 3 -1/2 a, (3.41)a22 -a 33  - 1al (341

which can be substituted into equation (3.40) to obtain

3/2 (2/3 a,, -a',,) 2  2/3o2 (3.42)
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Finally, combining equation (3.42) with equation (3.39), we obtain

ao
C=2/3 a (3.43)

aep•ee

As proposed by Shield and Ziegler [56] and formulated by equations (3.31) and (3.32),
the form of kinematic hardening was intended for linear hardening where the slope of the
equivalent stress-equivalent plastic strain curve is a constant. Nothing in the above derivation
prohibits modeling the equivalent stress-equivalent plastic strain curve as a series of straight

lines where the slope would be constant for each segment. This idealization is shown in
Figure 3.3. Thus, we may assume that the above derivation is applicable in each one of the

straight line segments of the idealized curve.

Now substituting equation (3.43) into equation (3.38), we obtain the desired relation-

ship for kinematic hardening:

(a' =(i-a' (mn -am n)
de n i° doij (3.44)mn au4/9-102

aee

The similarity is quite interesting when the above equation is compared with the equiva-
lent one for isotropic hardening, equation (3.30). The kinematic-hardening relationship can be
obtained from that for isotropic hardening by simply substituting the shifted, i.e., the corrected

deviatoric stress tensor, for the usual deviatoric stress tensor and using the intial proportional

limit of the material instead of the current value of effective stress.

3.8 STRAIN -TO-STRESS TRANSFORMATION

We now proceed to derive the stress-strain relationships which will be required for the
finite element method. Equations (3.30) for isotropic hardening and equation (3.44) for

kinematic hardenirig transform an increment of stress to an increment of plastic strain. An

inverse relationship which transforms total strain to stress is required. The derivation will be

carried out in terms of isotropic hardening; the transition to kinematic hardening is easily per-

formed as described in the previous paragraph.

The assumption is first made that strain may be decomposed as follows
deT = deE+ deP (3.45)

where dei and deE are the total and elastic strains, respectively. We can then write

doij =Cijk k (deT• • )( .6
d0kQd uiA) (3.46)
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where CijkQ is the elastic constitutive tensor which contains Young's modulus and Poisson's

ratio. Equation (3.13) has been used in writing the above equation.

From equation (3.30), an explicit expression for A may be written:

A= 2 doij (3.47)
4/9 au 0,2

aee

Now multiplying equation (3.46) by ai and combining with equation (3.47), we may find an

expression for A which is a function of strain and the current state:

A= aiu Ciijk dekQ (3.48)
4/9 _ &2 + a!. C..

1 ep 0 e Uj ijký kQ2

Equation (3.48) is now substituted into equation (3.46) to obtain the desired result:

Cr Cijkk OkV 'OPq Cpqrs deT (3.49)

dij = Cijrs acje 2 ,rs4/9 •~72u oe C a's
ae4 e pq pqrs rs

ae

The implementation of the above equation will be given later.

In addition to equation (3.49), an explicit expression for the differential of the equiva-

lent plastic strain will be required during the solution of problems. This can be written as

2/3(70,C.-
deeP 2 /3= e ij Cjrs deT

= a rs (3.50)
4/9 -02+01 C

a e ij ijkkQ
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CHAPTER 4

GEOMETRIC DETAILS

The development of an adequate shell element requires that considerable attention be
given to how the geometry of the shell surface is used in the formation and implementation of

the element. As pointed out in the first chapter, Gallagher 1 51 has indicated that this has

been one of the most difficult hurdles to overcome in developing shell elements.

4.1 SURFACE DEFINITION

The formation of the stiffness matrix for the quadrilateral, the determination of the

loading on the element, and the transformation of the stiffness matrix, the displacements, and

the loads require detailed information on shell geometry.

The theory for the element has been developed for application to surfaces that can be
represented by a quadratic form. Referring to Figure 4.1, the surface must be able to be

expressed by the function f where according to McConnell [57],

f(x')=Qijxjxj+bk x +C=O (4.1)

Here x' is the auxiliary coordinate system of the surface and Qij and bk are constants.

Cartesian coordinate systems shown in the figure are the local element coordinate system and

the global coordinate system. Each element will have its own coordinate system as will each

surface.

It will also be necessary to represent the surface by a vector function

rAx 
I Al (4.2)11=l + x2 (01,/02) '2 + x3 0/1, 02)i3(42

where 31 and/02 are the Gaussian coordinates on the surface, not necessarily orthogonal. The

above is a parametric representation of the surface in terms of the coordinates /1 and /2.

The quadratic form equation (4.1), and the parametric representation, equation (4.2),

are given in the appendix for the surfaces that are treated by the theory developed here.

4.2 ELEMENT DEFINITION AND BOUNDARY

The element corners are given by nodal points 1, 2, 3, and 4 shown in Figure 4.2.

The local element coordinate system, xi, is established by the first three nodes. In other

words, these nodes set the X-Y plane and the fourth node is generally not in the plane. The

element sides must be defined in a unique way so that there will be no overlapping or gaps

Ietween adjacent elements. This is done by letting the side of the element be along a line

which is represented by a linear relationship between the (1, 92) coordinates, that is, each of

the sides is given by the equation
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92 =o 1

where o is a constant and i assumes the values from one to four.

The midside nodes lie on the above-defined lines. The (01,02) coordinates of the

nodes on each side are the mean of the (91,02) coordinates of the two nodes which define

the side.

4.3 SLOPE OF SURFACE IN ELEMENT SYSTEM

During the computation of the element stiffness and the distributed loading on the

element, the slope of the surface is required in the local element system. This is obtained by

expressing the quadratic form of equation (4.1) in terms of the local element system. We use

the transformation relationship between the element system and the coordinate system of the

quadratic surface. This is written as

xi = aik xk + (4.3)

where the origin of the element system, nodal point 1, is given by the vector
1 1,^1' = xi i•' (4.4)

The transformation array, aik, is determined by using the first three nodal point coordinates as

described above.

Now substituting (4.3) into (4.1), we obtain an expression for the surface in terms of

the element system:

1t 1,
f(x) = Q aik ajk Xk xk + Qij aik xk xj + QI aj• x2 xi

(4.5)11~ 1
+Qijx+bm amn xn +bm Xm +C=0

The desired slopes are the derivatives of z with respect to x and with respect to y.

Since it would be extremely tedious to solve for an explicit expression for z in terms of x and

y (one would have to be derived for each surface), we choose to use implicit differentiation

and tensor calculus to obtain the required slopes. As an example, to compute the derivative

of z with respect to x, we can first write the derivative of f with respect to x

af afaz
-f+-a a -=0 (4.6)ax az ax

Thus solving for the slope, we obtain

af
az ax
ax -T (4.7)

az
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Thus the derivatives of the function that expresses the surface in the element system are re-

quired. Differentiating equation (4.5), we obtain

af 1,
ax= Qi aajQ 6ko xQ + Qi aik ajQ xk 6Q0 + Oi aik 6ko x.

+ Qij ajk 5Ro x. + bm amn 5no (4.8)

af - 2 Qijaim ajkx+ 2 Qijaimxj+b a

Now substituting (4.8) into (4.7), we obtain the slope in the x-direction as

_2Qj ail ajk xk I 2Qj ail I I +b apI31 xj a (4.9)
2Qij ai3 ajR xg + 2Qij ai 3 xj + bp ap3

and, similarly, the slope in the y-direction as

1,
az _ 2Qijai2 ajxk+2Qij ai2 xj+b p ap2 (4.10)

1,ay 2Qij ai 3 ajk xg + 2Qij ai 3 x3 + bpap3

Thus equations (4.9) and (4.10) are evaluated at each of the integration points in the

element and then used to form the stiffness of the element and to compute the consistent

nodal forces that are equivalent to the distributed loading. It should be noted that at a par-

ticular integration point in the x-y plane, everything is known that is required in the equa-

tions except the value of z, the distance of the element above or below the x-y plane. The

value of z can be obtained by using the x-y coordinates of the integration point in equation
(4.5), which can then be reduced to a quadratic equation in z. The correct value of z will be

the one which has the least absolute value.

Although all of the above may seem to be somewhat involved, the only other alterna-

tive would be to assume that the height of the surface above the x-y plane can be represented

adequately by a polynomial, a cubic for example. Thus since there are then ten free parameters

in a cubic polynomial, ten values of the height would have to be computed and then ten

equations would have to be written of the type

22 3
z=.a,+a 2 x°+a 3y0 +a 4 x2 +a 5 x0y°+a 6 y +a 7 x

(4.11)

+ a8 x°2 y + a9 x°Y02 + al 0 y 3

Here (x0 , y') are the coordinates of the point where the height z' is evaluated. The equations

would then have to be solved for the coefficients a1. Finally, the value of the slopes at each of

the integration points could then be calculated.
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It is not clear that the cubic fit method is more efficient than the previous devised

method that is used in the quadrilateral element. However, it is certain that the previous

method is more accurate than the cubic fit since it is exact. The derivatives of functions that

are represented by polynomial fits are notoriously poor. Thus one would not expect the

slopes obtained from the cubic approximation to be very accurate.

4.4 SURFACE VECTORS

For the calculation of the element stiffness and the transformations required in imple-

menting the element, it will be convenient to be able to compute vectors on a line on the

surface. We will assume that the line can be represented by a linear function of/31 and 12.

Thus the previously described element boundary fits this description. Moreover, we will

further assume that the surface boundary can be adequately represented by a series of these

linear curves. The convenience of having the capability to compute these vectors will become

apparent later when we describe the computation of the element stiffness and the transforma-

tions.

Consider a portion of a surface shown in Figure 4.3 which has been modeled by a

number of the quadrilateral finite elements. The line S1 is a linear curve between two ele-

ments and the line S2 is a portion of the boundary. Both lines are linear in the sense

described above.

The vectors b, t, and fi are unit vectors at the particular points J and L. The vector n

is normal to the surface and is computed by first taking the cross product

ar ar
- x-= =n (4.12)

a/l a02

where E is the vector function that defines the surface and is given in equation (4.2). The unit

normal is then obtained by dividing the normal vector by its magnitude, i.e.,

=n- (4.13)

To compute the tangent vector, we must first express the line as a vector function. We

do this by using the equation of the line which is a linear function of 01 and /2. Thus solv-

ing, say, for P2 in terms of 01 and substituting into equation (4.2), we obtain

r3101'032031)) = p(3 1 ) =F(31 )il+Go(31 )'2 + H(31 )3 (4.14)

where P is now the vector equation of the line between the elements or of the segment of the

boundary. This depends on the particular situation or case for which the computation is being

performed. We now obtain the tangent vector to the line by computing the derivative of p with

respect to /1 to obtain
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aP aF .,aGý aH ^,
if8+ if +--lif (4.15)

The unit tangent vector is now obtained by dividing the above vector by its length, as was

done for the normal vector. The positive sense of the tangent vector is taken in the direction

of increasing 01. If the line happens to be on a constant 0, line, the above process for com-

puting the tangent vector is performed by using 92 as the parameter.

The final vector b is obtained by performing the cross product

b=t xn (4.16)

This vector is a unit vector since the two vectors used in the cross product are unit vectors.

However, the b vector is not necessarily the binormal to the curve between two elements or

the curve along the boundary, but it is a unique vector which is sufficient for our purpose,

namely, to compute the element stiffness and perform transformations. If it so happened

that the linear line on the surface was also a geodesic line, then the normal to the curve would

coincide with the normal to the surface and then the vector would be the binormal to the

curve at the point in question.
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CHAPTER 5

QUADRILATERAL SHELL FINITE ELEMENT

The derivation of the shell quadrilateral finite element will be obtained by showing the
particular form of the basic formulation presented in Chapter 2. At particular points in the

derivation, we will draw on the geometric information given in Chapter 4.

5.1 STRAIN DISPLACEMENT RELATIONSHIP

The strain displacement relationship for the quadrilateral element is that due to

Marguerre [58] and also presented in Washizu [38]. It is assumed that the strain is repre-

sented adequately by letting the element be a segment of a shell that does not differ greatly

from a segment of a flat plate which has an initial deformation. This approximation will not

limit the application of the element and falls within the well-known shallow shell theory.

Thus the only limitation imposed is that each individual element is a shallow shell. The
specifics and source of this limitation will be brought out in the derivation.

Referring to Figure 5.1., the undeformed shell element is assumed to be represented

by the mapping

x=X
y=Y (5.1)

zw=,

where v is the distance from the (X, Y) plane to the midfiber of the shell. After load-

induced deformation, the midfiber mapping becomes

x=X+u
y=Y+v (5.2)

z=W+w

where we consider u, v, w, and v to be functions of X and Y only.

Prior to load-induced deformation, a point on the midfiber can be represented by the

vector
r(o) X7I + Y' 2 + 3  (5.3)

and a point distance ý above or below the midfiber by

r(o) o) + (o) (55)

where jn(°) is the normal to the surface before deformation. This normal is computed by

taking the cross product
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ar(O) ar(O)

-x -yn (o) 5X Y5)

After load is applied to the element, a point on the midsurface assumes the position

1o = (X + u)' 1 + (Y + v)' 2 + (v + w)l 3  (5.6)

The normal to the new position is now computed by

aro aro
•. aX aY
n jar0 aLrjo (5.7)

ax aIY

The approximation of the shallow shell theory in Cartesian coordinates is now intro-

duced through the assumption that

(a&\-2(aýN a~v <<L- (5.8)

and thus sets the limitations on how "deep" the shell element can be without degrading the
results of the computations.

We will further assume that the shell element is thin and the curvature is not very large,

such that

LwX2 L awýy I <«1 (5.9)

and that multiples of 1 cause lower order magnitude terms. Also, since we will be using the
approximation that the stretching terms are small, we may assume that

au au av avaIx'Y' a X'~ •Y< «1 (5.10)

Imposing (5.8), the normal to the element surface before loading may be computed by

(5.5) to obtain

(. i + i3 (5 .1 1)

5X I ay 2+13

After deformation, the normal to the midsurface is obtained from (5.6)

n- - +•-i2 +13 (5.12)
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where (5.10) has been used along with the assumption that the square of the derivative of w

may be ignored in computing the unit vector.

The additional constraint of the Kirchoff hypothesis will be imposed by the equation

r=ro+ n(5.13)

which is the position vector of any point through the thickness after deformation.

We may now compute the strain tensor by using (2.3). Before proceeding, it is impor-

tant tonote that equation (2.3) is based on the assumption that the line segment before

deformation can be written directly in terms of the increment of the Lagrangian coordinates.

This is not true for the case here where the actual load-induced deformation starts out from a

deformed configuration, i.e., the element shell surface. We may still use a Lagrangian descrip-

tion as long as all quantities are referenced to the basic configuration in the (X, Y) plane.

Thus, using (5.4) and (5.13), we may write (2.3) in the form

Ifar \ar \ar(o) \Ar(o) \ds2 -dS2 =k53dXi). ýa-Xj dY ar°dXi)(.r °dXj
- Xj)• a-i a\X 1 (5.14)

=2E i dXi dXj

The final expressions for the strain quantities are now obtained by substituting the previous

expressions into (5.14) and dropping all terms which are assumed to be small for the reasons

stated previously. For any position through the thickness of the shell, the three strain terms

become

Exx = --au+ ý-w -- + 1/2-) /aw\ 2  aw --- (5.15)
Exax ax ax ý l/ ) aX

Eyy v =-+ a-v w'+ 1/2\y -Y (5.16)
YY =ay ay ay \aY ay2

au av a~vaw a~vaw aw aw a2w

xy a• ax ax a+Y a -ax ax aY axaY

The above equations are appropriate for small direct strains and moderate rotations.

5.2 ASSUMED DISPLACEMENTS

The quadrilateral element on the surface of the shell was shown in Figure 4.2. We

must now examine the region that is the projection of the element onto the local (X, Y)

plane. In the Lagrangian sense, this region contains the material coordinates in which we will

assume that a certain displacement exists and over which we will have to express the loading

and perform the integration for the stiffness equation.
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On the shell surface, the element is quadrilateral in shape but the projected region in

the (X, Y) plane is not. Nodal points 1-3 establish the (X, Y) plane and thus the local

element coordinate system. The remaining nodes are projected onto the plane to establish the

eight-sided polygon shown in Figure 5.2. The true region is curvilinear in shape for the
general application, but the above approach should be sufficient to represent the area.

Following the work of Fraeijs de Veubeke [591, we use patching-type bicubic functions
for the assumed displacement pattern. This approach was used originally for studying plate

problems, but one of the requirements to maintain compatibility between shell elements is

that the same order (here bicubic) polynomial must be used for each of the three u, v, and w

displacements. We refer here only to the displacements of the midfiber of the shell element

and consider only the u displacement first.

Referring to Figure 5.2, the complete ten-term cubic polynomial is used over the

entire region, that is,

uc =a, +a 2 X+ a3Y+a 4 X2 +a5 XY+ a6Y 2 +a 7 X3 + a8 X2Y+ a9 Xy2 +a,0Y 3  (5.18)

Next, the two auxiliary coordinate systems shown in the figure are introduced. An additional

function

u'=a,1 y' 2 +a 12 y'3 + a13 X'y' 2  (5.19)

is defined to be acting in the region where Y' is greater than zero. Also, a third function

u" = a14 Y- 2 + a15 y" 3 + a16 X" Y" 2  (5.20)

is defined to be acting in the region where Y" is greater than zero. Each of the functions is

written with unknown coefficients which are to be determined. Thus, the u displacement at

any point within the region can be expressed by

u=uc +u' +u" (5.21)

with the prime and double-prime functions being defined as above. All three displacements on

the right side of (5.21) are directed parallel to the positive X axis.

Similar to the u displacement, the v and w displacements are defined by
v =vC + v' +v" (5.22)

and

w =wc + w' + w" (5.23)

where the prime and double-prime terms have the same meaning, only now the range on the

coefficient subscripts is 17 to 32 on v and 33 to 48 on w. We may express this in matrix

form, which is the equivalent of equation (2.18):
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a,

I I a16

= 0 1I r I 0 (5.24)II
w a 3 3§10 I r:--_ I a

La48

where

[r] = [ X Y X2  XY y 2  X3  X2 y Xy 2  y 3  y,2  Y ,3  X'Y ,2  y ,,2  Y ,,3  X ,Y ,,2 1 (5.25)

The above displacements are only for the midfiber of the shell element where equation (2.18)

was written for the general case for any point in the body. The displacement for any point

through the thickness of the element will come from the constraints of the Kirchoff hypothesis,

equation (5.13).

5.3 GENERALIZED DISPLACEMENTS

The concept of generalized displacements was introduced in Chapter 2 through equation

(2.20) and the characteristics of these displacements were stated. One characteristic was that

the number of generalized displacements is equal to the number of undetermined coefficients.

Thus for the quadrilateral, we will introduce 48 generalized displacements in accordance with

equation (5.24). Our eventual goal here is to express the displacements of the midsurface of

the element, equation (5.24), in terms of the generalized displacements.

The nine generalized displacements

u au au av av awaw (5.26)
[vJ [u v w a•XaY a x aY YJ

will be used at nodes 1, 2, 3, and 4, and the three generalized displacements

m au avaw (5.27)
ab5b ab

will be used at each of the midside nodes 5, 6, 7, and 8, giving the required total of 48. The

b direction in equation (5.27) is the direction defined by equation (4.16) and shown at point

J in Figure 4.3.

It was pointed out in Chapter 4 that the direction and positive sense of b in equation

(4.16) is unique and is referenced to the coordinate system on the shell surface. Thus the

derivative of the displacements with respect to b in two adjacent elements will have a positive
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sense in the outward direction in one and an inward positive sense in the other. This is im-

portant for maintaining compatibility between the two adjacent elements since the displace-

ments along their common boundary line are expressed in terms of the generalized displace-

ments at the nodes on the line.

Expressions for the generalized displacements, equation (5.26) and (5.27), can be

determined by using equations (5.24) and (5.25). The first three displacements of (5.26) are

the same as (5.24). The remaining generalized displacements can be determined by the chain

rule. As an example, from (5.21), we have

au auc au' au"
C= -- + aji - +C (5.28)

ax ax ax i; +i 31 xj

where

axf
aji - i (5.29)

and

axI'
.i.= a-x (5.30)

and thus the derivatives of the total u function with respect to X and Y can be determined.

The second order tensors of (5.29) and (5.30) are arrays of direction cosines which relate the

two additional coordinate systems to the basic element coordinate system. Also, the deriva-

tive of u at midside node m with respect to the direction b can be determined from

aUc au'dm au"
abmarl -d dk a~k k Ckax" (5.31)

where

axi
dmn = - (5.32)

abrn

Expression (5.32) is a shorthand notation for the two direction cosines which relate the X and

Y axes to direction b at midside node m.

We may now write the 48 equations in the generalized displacements so that each is

evaluated at its respective nodal point in accordance with equation (2.20), but since the same

polynomial form is used for each of the u, v, and w displacements, only 16 equations have to

be formed. Thus, considering only the generalized displacements in u, we may write

au u4  au u au au au au
aX1  aX4 ax 1 - a-4 1ab 5  abj

S(5.33)

=[47 e,,]
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where the numerals indicate nodal point numbers. The Greek alphabet symbols are intro-

duced for future reference. Now, writing (2.20) for the u displacement

= [' (a j(5.34)
( a163

and inverting, we obtain equation (2.21) for the quadrilateral element

1= R (- I = eM (5.35)

where the bar has been written over the A matrix to indicate that only the u displacement has

been considered.

Equation (5.35) expresses the unknown coefficients of the u displacement within the

element in terms of the u generalized displacements at the corner and midside nodes. The A

bar matrix is identical for the v and w displacements and does not have to be computed.

The midside nodes in (5.35) are undesirable and are difficult to implement in a finite
element computer program. In the present application, they are eliminated by assuming a

linear variation of u, v, and w along the side of the element in the b direction. Thus, consid-
ering only the u displacement, the derivative of u in the b direction at the midside node is

assumed to be the mean of the combination of the derivative of u with respect to X and Y at

each of the nodes which define the side of the element. This may be shown by first rewriting

(5.35) in the form

La,6
(161~~ -[-~Ef~ (5.36)

The linear variation may be expressed by

where the terms of G are factors of one-half and direction cosines. Thus as an example, using

the notation of (5.32), we may write

au 1 2 2 d6 au d2 (5.38)
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The other three equations are obtained similarly. Substituting (5.37) into (5.36),

a,63

( )= Ii[~ G(5.39)

we obtain an equation for the coefficients in terms of the generalized displacements at only

the corner nodes.

Equation (2.22) may now be formed for all the coefficients and the generalized dis-

placements at each of the four corner nodes by using the transformation matrix formed in

equation (5.39). Before doing this, it is necessary to introduce additional generalized displace-

ments which are the derivatives of u, v, and w with respect to the Z coordinate. These

additional generalized displacements do not describe the deformation of the element, but they

will facilitate the transformations in going to and from various coordinate systems that will

have to be performed later. Thus, the set of generalized displacements at each of the four

corner nodes is now

Iu au au au av av avaw aw w 5[Vli = VW ax a az ax z ax ay azi (5.40)

The equivalent of equation (2.21) for the quadrilateral element can now be written as

"ý2

&a48 --

where the columns of the A matrix are obtained from equation (5.39) and are ordered in accord-

ance with the ordering of the generalized displacement in (5.40). The columns which correspond

to the derivatives with respect to Z are void.

The final equation which expresses the displacements within the element in terms of the

generalized displacements at the four corner nodes may now be written by substituting (5.41)

into (5.24) to obtain

u 1 Fi
V 0 r 0 A VII----- 4- - - (5.42)L 101 rJ[J j
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5.4 GENERALIZED STRESSES AND STRAINS

The stiffness equation, equation (2.30), was derived for a general three-dimensional
problem and must be specialized for plate and shell problems which are solved by using the
Kirchoff hypothesis, equation (5.13). We begin by introducing the concept of generalized

stresses and strains.
Equation (3.49) gives the constitutive relationship for an increment of stress in terms of

an increment of total strain. Introducing the notation of Marcal [601, we may write

{ASH=[p-1 {AEJ (5.43)

where the stresses and strains have been put into vector form and the matrix p- is the term in

brackets in equation (3.49).

The generalized stresses are introduced through the equation

h

AN-=4 - iAS4 dZ (5.44)
2

where the stresses are integrated through the thickness, h, of the element. The generalized
stresses are now the thrust and moment per unit inch.

The expression for generalized strains can be obtained by first writing an increment of

total strain as

JAEý = JAE +ZzXAKI (5.45)

where the first term is the strain at the midfiber and the second term is the additional strain
due to bending. Using (2.15) and (5.15) through (5.17), the two components of strain for the
quadrilateral element become

A~ ~~~i a a wAa 1/2 2

XX ax kTXTw) TX (AawWav aw / aw(2
JAPEy AE = AI -+ E+ A-+1/2 (5.46

-A/ au av aw aw\ aw w w) aw+Aaw aw
YAT ax ax aX 3/ 5 TaY TXa5
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and

a2 w
AKXX - Ax 2

{AK} AKyy = - A_

;y-2 (5.47)

Y2w

2AKxy -2A a2w

The engineering definition of shear strain has been used in (5.46) and (5.47). Substituting

(5.43) into (5.44) and using (5.45), we obtain the relationship between the components of
generalized strains and generalized stresses:

h
JAN 2 [ z] -p I ZIP

L 1_--- Z dZ ( (5.48)
AM~ h LZIp-] Z2 [p- J 1 AK~

5.5 STIFFNESS MATRIX AND EQUILIBRIUM CORRECTION VECTOR

The previous definitions of generalized stresses and generalized strains set the form of

the stiffness matrix and the equilibrium correction vector of equation (2.30). The D matrix

of that equation is the matrix under the integral in (5.48). The B1 and B2 matrices of (2.30)
are defined in Table 5.1. The B1 matrix is the increment in generalized strain and is thus

identical to the combination of (5.46) and (5.47). The B2 matrix comes from the variation
on the increment of strain. The specific evaluation of the two matrices required in the

numerical integration is performed by using the expressions for the u, v, and w displacements
given in (5.24). The numerical integration procedure is described in the next chapter.

5.6 LOADING

The distributed loading for the quadrilateral element depends on the relationship of
the differential area on the shell surface to the projected differential area in the (X, Y) plane.

The two differential areas are shown in Figure 5.3. An increment of distributed load

expressed in terms of area on the shell surface must be corrected to the equivalent distributed
load in the base plane since this is where the integration will be performed. Moreover, the

change in the area on the shell due to a change in deformation must also be determined.

The vector differential area on the shell surface can be expressed as the cross product
of the differential vectors on the surface

da = drx8r (5.49)
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TABLE 5.1

BI AND B2 MATRICES

TXr 0I 1 I \ax a [r]

t a aI aw aw\aa I +rgr I /+a+g'a, a['r]

axr] Ir I•-x+x--x k-,ri aYaY•-[r~AaY r
T [BI]T= a2

o 0 I - [r]
aX2

0 0 
- a2

I ax2

0 0 I- 2 •X-a-•a r

I=1 g 1/2 h=l

1=2 g1I h=2

[r] is defined in equation (5.25)

or by the tensor equivalent

dai =eijk dxj 6 xk =eijk xj'm dXm Xk,n 6Xn (5.50)

Thus, an expression for the shell surface area can be obtained in terms of the base plane area

by using (5.1) in (5.50), i.e.,

da 1- + dA (5.51)

which will be used shortly to obtain the consistent loading vector. As expected, equation

(5.51) is similar to the equation of the normal on the shell surface, (5.11).

We now turn to the problem of determining the change in the area due to the change

in deformation that occurs in going from the intermediate configuration to the current con-

figuration. We may write the incremental equivalent of (5.2) as

xi + Axi = Xi + ui + Aui (5.52)

where it is understood that the initial warping, xV, is included in the component ui on the right

side for i equal to three. The change in the differential area can now be expressed by
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Figure 5.3 - Differential Area on Shell Surface and in Base Plane
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Adai = eijk d(xj + Axj) 5(xk + AXk) - eijk dxj 8xk (5.53)

Substituting (5.52) into (5.53), the change in area can be shown to be

Adai = eijk (6jm AUk,n +Ujm Auk,n + Auj,m 6 kn +Auj,m Uk,n
(5.54)

+Auj,m AUkn) dXm 6 Xn

Now imposing the assumptions of (5.8) and (5.10), the final expression for the change in area

turns out to be

Ara -A ••i - A - i2+0i3dA
A d a A a 1 -A a + 0 13(5 .5 5 )

Ada= Amj ij dA

It is interesting to note that (5.55) is similar to the difference in equations (5.12) and (5.1 1),

the difference between the surface normals after and before deformation. The m components

are the estimated displacements within the element and their computation will be described

subsequently.
The loading terms, (2.27) and (2.28), may be determined for the quadrilateral element

by using equations (5.51) and (5.55). The relative first-order amplitude of the two differential
areas before loading is

IdeAl [+ k-#)J =c(xY) (5.56)

The body force per unit volume of the shell surface is shown in Figure 5.3, which is
expressed in terms of the local element system as

g = gi ij (5.57)

The incremental part of (2.27) may now be written in matrix form using (5.56) and the
notation of (2.32)

IAP} =h[A]Tjf[r]T jAgjCdA (5.58)
A

where h is the thickness of the element and the scalar symbol A indicates integration over the

(X, Y) plane. The total load P of (2.32) at the intermediate configuration is obtained by

simply adding all the increments that have been computed previously.

The case of uniform normal pressure will now be considered for the distributed sur-

face loading. The surface traction acting on the shell is given by the equation

f=-pda (5.59)
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and the traction can be expressed in terms of unit area in the (X, Y) plane by using (5.51)

and (5.56) to obtain

Fi = PQiC(X, Y)dA (5.60)

With (5.60), the incremental term of (2.27) due to surface loading is now

/F I = -Ap[A]TY[r]T IV ýC(X, Y)dA (5.61)

A

where the components of the surface differential area have been put into column vector form.

The change in the surface traction due to the change in deformation may be written

directly now as

{AFGJ =-p[A]f[r]T {Am IC(X, Y)dA (5.62)

A

where the symbol m is defined in (5.55).

The Q components in (5.61) are dependent on the geometry of the shell whereas from

(5.55), the m components are dependent on the increment of displacements that occur within
the element. Using (5.42), we may write the m components as

Ami=0 1001rI,i [A] I{aP (5.63)

where the comma is used to indicate partial differentiation with respect to the index i. The m

components can now be put into vector form by writing

{Am} = [q] [A] JAz4 (5.64)

where the last row of the matrix q is void in accordance with (5.55). Now substituting (5.64)

into (5.62), we obtain the final form of the increment of load due to the change in deforma-

tion as

{ZSFG ~=-p[A]Tf[r]TC(X, Y)[q] dA[AI{A } (5.65)

A

In forming the above vector, it was noted previously that we need the increment of displace-

ment that occurs in going from the intermediate configuration to the current configuration.
Since these are the fundamental unknowns, the same procedure applies here as was used for

estimating the displacements described for equation (2.30).
Similar to the total body force loading, the total distributed loading, F in (2.32), is

obtained by adding all of the contributions computed and using (5.61) and (5.65) for all
previous increments.

The loading terms derived above are the generalized forces and are conjugate to the
generalized displacements in the sense that the product of the two produces work which is a
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scalar. Thus, the choice of a particular generalized displacements used and the application of

the virtual work theorem produced the generalized forces.

5.7 TRANSFORMATIONS

It is important to develop a consistent and valid approach for transforming the

generalized displacements and forces to and from various coordinate systems. The effective-

ness of the element would be greatly reduced if its use were restricted to one system.

Consider first the transformation of the generalized displacements at a node given by
(5.40). It is necessary to obtain a method that transforms the displacements between the

global system and the local element system.

The transformation of global coordinates (barred) to local element coordinates will be

taken as

Xi = aij X (5.66)

where

aij = cos(Xi, X) (5.67)

The generalized displacements at nodal point i are partitioned as followsI
v w u au au av av av aw awaw

Lu v w a Y aZ TX bY W Z a X TY i1  (5.68)

where, as before, the bar over the displacements indicates the values at the nodes. The transfor-

mation of the first type (superscript 1) is straightforward since they are vector components.

Thus
Vi) =ai (5.69)

where the capital letters indicate the generalized displacements in the global system.

To see how the second type of generalized displacement (superscript 2) will transform,

consider an increment of the first type of generalized displacement in the local element

coordinate system, i.e.,

avi
dy. dx. (5.70)

Using (5.69), we obtain

dVi =Xj (aik Vk) dXj (5.71)
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and expanding the above

di =X- (aik Vk) - dX. (5.72)

Since the transformation is independent of the position in the coordinate system, we may write

dVO -ak aj k 2 dXj (5.73)

where the inverse of (5.66) has been used. Comparing (5.70) and (5.73), we see that

=i k (5.74)

Thus the transformation of the second type of generalized displacement is

, = aik aJ2£Vk (5.75)

which is the transformation for second-order tensors.

The transformation of the first type of generalized force follows from (5.69) and the

equality of work performed in the local element system and the global system [61]. Equating

the work performed in the local system to that in -the global system,

fP V =F-1 Vf (5.76)

and substituting (5.69)

f0 (ai. VIl)F1 V1 =F1 V1 (5.77)

we obtain
Sa.= 0F1  (5.78)

S ij J

Now multiplying by the transformation tensor

f0 a f - ak F1  (5.79)
ikjaiI-f ki kj

we obtain the transformation of the first type of generalized forces as

fl =a F1  (5.80)

Since the second type of generalized displacements transform as second-order tensors,

the generalized forces must also be elements of a second-order tensor in order to be conjugate

to the displacements in the sense that the product of the generalized displacements and

generalized forces produce work which is a scalar. Thus as was done for the first type of

forces and displacements in (5.76), we may now equate the work in the local and global

coordinate systems:
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f?-2 i = F. VI. (5.81)
13 13 13 13

and the derivation follows similarly to that given for the first type. Substituting (5.75) into

(5.81),

f2a a.- 2  =F2 V2 =F2  V2 (.2
f2 aim ajn Vmn 1F ij mn mn (5.82)

and thus

f2a. a. = F2  (5.83)ij im pi mn

Now multiplying by the transformation tensors

fa a 6 . =a a F2
1 aQmaimapn ajn = i i pj •m pn mn (5.84)

we finally obtain
a F2 (5.85)

fip =aqm apn mn

All of the above may now be put into matrix notation. Equation (5.69) may be

expressed as

10 =[t1] KV11 (5.86)

where the notation is self-explanatory.

The second type of displacement transformation could be written as

{V2t =[t 2 ] [V21 [t2iT (5.87)

but would cause problems in the implementation of the element. The element has been

exercised in a program (to be described in the next chapter) which presently has provision

only for the transformation of generalized displacements and forces which transform as

vectors. The reason is that there has been no need for any other type of transformation since

the degrees of freedom of most other elements have transformed as vectors. Cowper et al.

[22] developed a shell element for shallow shell applications; some of its degrees of freedom

are similar to the second type used here, but the transformations are performed in a two-

dimensional space.

If (5.75) is expanded, then the second type of generalized displacements and forces

could be transformed in one operation in the same sense as that required for the transforma-

tion of the first type of displacements and forces. If we write the transformation of the

second type of generalized displacements as

Jv2 =[t 2 ] I521 (5.88)

then the examination of the expansion of (5.75) reveals that the transformation matrix in

(5.88) will be in the form
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[ all [a] a1 2[a] La13 [a]

[2I -~ [a a-[a I---------IP

La3l[a] a32[a] a33[a]

where the matrix a is the array of the second-order transformation array of (5.66). Now com-

bining (5.86) and (5.88), the ,. .. of all of the generalized displacements at nodal

point i takes the form

-= 2= [t]= I (5.90)

Using (5.90), the transformation of all the generalized displacements, i.e., degrees of freedom,

of the element can be obtained as

V12 ---- t] 0 0 10 V€2
•3 •0 It] 0 . 0 V35.1
V2 0 L. 4 .. '2 (5.91)L 0i 0 I0t 0 V3

0V 0101 It] (V 4 )
or

lIv= [T] tv} (5.92)

Starting with equation (5.88), a parallel development of the matrix expressions could

be given for the transformation of the generalized forces. The final equation, which has the

same meaning as equation (5.92), will simply be written as

tfV=[TT{FI (5.93)

where the transformation matrix is the same as in (5.92).

The transformation of the element stiffness matrix from the local element system to

the global system follows directly using (5.92) and (5.93). The stiffness equation can be

expressed. as

[k]IVI=If1 (5.94)

where the matrix k is the element stiffness in local coordinates. Now substituting (5.92) and

(5.93) into (5.94), we obtain

[ki [T] It/= iT] IFI (5.95)

Then operating on both sides of the above equation by the inverse of the transformation

matrix, we obtain (since orthogonal transformation)
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[T]- 1 [k] [TI {} = [T]T [k] [T] JVJ (5.96)

The stiffness in global coordinates can now be written as

[KI =[T]T [k] [TI (5.97)

and the stiffness equation in global coordinates can be expressed as

[KI JV1= {Ft (5.98)

The stiffness equation in local coordinates given in (5.94) is equivalent to the incre-

mental stiffness equation of (2.32). The notation has been simplified here to clarify the

derivation of the transformations. Thus (5.98) is equivalent to the incremental equation

(2.32) expressed in global coordinates.

5.8 CONVERGENCE REQUIREMENTS

In the development of any finite element, it is essential that particular attention be

paid to satisfying convergence requirements. It is important that the convergence be mono-

tonic so that the investigator will always know on which side of the correct solution his

current solution lies.

During the early application of the finite element method, an unfortunate situation de-

veloped when it was found that better "convergence" rates were often obtained if the known

correct requirements for convergence were relaxed. These practices are dangerous and should

be discouraged, particularly when one starts to apply the same methods to nonlinear problems

where the solutions are much more difficult than in linear problems. The use of such

practices serves only to cloud the picture.

Irons and Draper [621 state three requirements as necessary to ensure convergence:

a. The assumed displacement functions must be continuous within the element and

the displacements must be compatible between adjacent elements.

b. The displacement functions must include the rigid body displacements.

c. The displacement functions must include the constant strain states of the element.

The second requirement is actually a special case of the third under certain conditions. The

first two of the above requirements were mentioned in Chapter 1 as two of the four primary

difficulties that have impeded the derivation of curved shell elements [15].

The compatibility requirements for a particular element come from the geometrical

boundary conditions obtained in the derivation when a variational principle, such as the
principle of virtual work 'is used. The necessary boundary conditions for the shallow shell

theory being used are compatibility of the u, v, and w displacements and the derivative of the

normal displacement w in the direction normal to the edge [38]. These are boundary con-

ditions that are imposed on an element by the surrounding elements.
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The continuity of the u, v, and w displacements is ensured since we are using equal

order bicubic functions for each of the three displacements. Continuity could not be guar-

anteed if we were using lesser order polynomials for u and v than for w.
The continuity of the rotational displacement is effected through the use of the three

surface vectors. The normal rotation is computed through the use of equation (5.31) and was

explained in Section 5.3. It is noted that the midside node in elements I and 2 in Figure 5.4

is actually two different material points in the X-Y plane of each of the two elements (not

shown) which is mapped to the same spatial point J on the shell surface.

The intent of the second requirement for convergence is to induce no strain in the

element when it undergoes a rigid body motion. This requirement on the assumed displace-

ments is strictly in the context of the small displacement theory. Considering equation (5.14),
we see that all of the terms of the strain tensor must be included to describe the unrestricted

motion of a line segment undergoing a rigid body motion. Thus if we are to truncate the

expressions for strain and retain only the linear terms, the concept of inducing strains by rigid

body motion becomes a relative matter which is limited to the small displacement theory.
It is known that the inclusion of the rigid body modes in the assumed displacement

pattern gives improved linear results [26]. The assumed displacements used here for the formu-

lation, equations (5.24) and (5.25), do include rigid body translation and rotation (linear

terms). In view of the above remarks on the truncation of the expression for strain, some
additional information is needed on the adequacy of the formulation for application to linear

problems.

Examination of the eigenvalues of the stiffness matrix is a convenient method to de-

termine the adequacy of an element for satisfying the rigid body requirement. It is known
that there will be zero eigenvalues equal in number to the number of rigid body degrees of

freedom [631.

During the generation of the stiffness matrix for the quadrilateral element, it was

found necessary to place a 1.0 on the diagonal for those degrees of freedom which are

derivatives with respect to Z. There are a total of 12 of these degrees of freedom. Thus for

an ascending ordering of the eigenvalues, the nineteenth is the first one that can be associated

with the deformation of the element since the first six are attributed to the rigid body motion.

We will subsequently examine the eigenvalues of the stiffness matrices of several elements in

order to demonstrate the above characteristics.
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CHAPTER 6

IMPLEMENTATION OF THEORY

The previously described theory has been incorporated in an early version of the

general purpose program developed by Marcal and his associates at Brown University. The

methods of solution in the program have been described [64, 651 in a number of previous

publications and the basic techniques used will be reviewed only briefly here. The description

will be primarily limited to the implementation of the quadrilateral element and the previously

described incremental formulation developed herein.

6.1 LINEAR ELASTIC LARGE DEFORMATION SOLUTIONS

The study of the large deflection of structures where the material remains elastic re-

quires much less computational effort than when the material of the structure is carried into

the inelastic range. The [D] matrix of equation (2.30) remains constant throughout the load-

ing history.

Each of the component terms in equation (2.30) is integrated over the volume and

surface of the element in the local coordinate system. The region of integration for the

element is shown in Figure 6.1. Each of the integrals is computed by the approximate

method whereby the region is subdivided into 16 subtriangles and the integrand is then evalu-

ated at the centroid of the subtriangle. To integrate the function f over the element, the

approximation is made that

ff(xy) dA fi(xc, c) AA. (6.1)
.1 i=1,16

where the superscript c indicates the function evaluated at the subtriangle centroid. Thus the

product of the terms appearing in the integrand of each of the respective terms is evaluated at

the centroid, multiplied by the contributing area, and then summed.

The evaluation of the BI and B2 matrices given in Table 5.1 for the quadrilateral is

required for the computation of the element stiffness matrix and the equilibrium correction

vector in (2.30). In Table 5.1, the terms in parentheses shown with bars are the local slopes

of the element surface derived in Chapter 4. The remaining terms in the parentheses are, first,

the effect of initial displacements as termed by Marcal [6] and, second, the estimate of the

displacement that will occur in going from the intermediate configuration to the current con-

figuration. The latter are prefixed by the del symbol. The initial displacements are the total

displacements that have occurred up through the intermediate configuration. The determina-

tion of the estimated displacements, i.e., the displacements that are to be computed for the

current increment, was described following the derivation of equation (2.30) but additional

detail will be given subsequently.
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Thus, it is relatively straightforward to form the stiffness matrix and the equilibrium

load correction vector of equation (2.30). The explicit evaluation of the BI and B2 matrices

at each of the integration points is obtained first by computing the derivatives of the r matrix,

defined in equation (5.25), through the use of equation (5.28). The initial displacements and

the estimated displacements at the integration points within the element are dependent on the

initial and estimated generalized displacements at the element nodal points. For the quadri-

lateral, the initial and estimated displacements are in the w component only. Their relation-

ship to the generalized displacements at the nodes is

aw a(
ax -a=x t [OM AI [6.2)

at=1,2

which is written in the local element coordinate system. Thus the initial and estimated dis-

placements are computed for the integration point and added to the local slope of the shell at

the point. This sum is then used in forming the BI and B2 matrices.
The analysis is started by applying a small portion of the total load and computing the

linear elastic response. For this part of the analysis, the initial displacements are zero and the

estimated displacements are not used because (a) it is assumed that the load is applied to the

undeformed structure and (b) the applied load is so small that the response is linear. At this

point the BI and B2 matrices are identical and the computed stiffness matrix is symmetric.

The stiffness matrices are q.ssembled into the global, i.e., the total stiffness matrix, and the

resulting equations are solved for the generalized displacements at the nodes resulting from

the application of the first loading. The computation of the consistent loading vectors for

distributed loading is straightforward and was described in Chapter 5.

The nonlinear analysis begins at this point. The previously computed generalized dis-
placements at the nodes are first used to compute the estimated generalized nodal point

displacements that will occur in the next increment of loading. This estimate is obtained by
a simple linear extrapolation. Thus by using the previous notation for the generalized nodal
displacements in the global system, we may write the estimated displacements for the next

increment of loading as

P AVi+l}e = f IAyi 1 (6.3)

where f is the ratio of the applied loading in the next increment to the applied loading in the

increment just computed.

The element stiffness matrices are now recomputed to incorporate the nonlinear effects.

The generalized nodal displacements and the estimated nodal displacements that will occur in

the current increment, obtained through equation (6.3), are first transformed to the local ele-

ment coordinate system by equation (5.92). The element internal initial displacements and

estimated displacements are now computed for each integration point by using equation (6.2).

These values are then used in forming the B1 and B2 matrices required for the element stiffness
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matrix and tile equilibrium load correction vector of equation (2.30). The generalized stresses

computed at the conclusion of the initial linear analysis are also used in forming the equilib-

rium load correction vector.

The newly computed stiffness matrices are now transformed and assembled again into

the global system. The total load vector is augmented first by the increment of direct loading

and then by the equilibrium load correction vector and the estimated change in surface loading

due to a change in geometry-if this effect is being included in the analysis. These, too, are

transformed to the global system. The estimated displacements within the element for use in

equation (5.65) for computing the load due to a change in geometry are computed identically

to those that were computed to form the BI and B2 matrices. The solution of the stiffness

equations now yields the increment of generalized displacements at the nodes resulting from

the application of the increment of load.

The incremental displacements of the nodes that are computed will not be exact since

the estimated incremental displacements that were used in forming the stiffness equations were

not exact. This is true in general since a linear extrapolation is used to obtain the displace-

ments and we know from the outset that the load-deflection curve is nonlinear.

An important advantage of the method being described is that we know that the

solution technique could give the exact answer if we were able to use the exact increment of

displacements in forming the stiffness equation; this, of course, is impossible since it is what

we are after in the first place. The word "exact" is used in the context that we are working

with the full equilibrium equations and use no linearization approximation (except for estima-

ting displacement) during their derivation. Barring divergence, we know that the increment of

displacements that we have just computed will give a better estimate of the true incremental

displacement than will the linearly extrapolated values used at the beginning of the increment

Thus the computed incremental displacements may now be used to form the revised element

stiffness matrices, the equilibrium load correction vector, and the loading vector due to the

change in geometry. This is done all within the current increment of loading, that is, without

changing the load. The process is repeated until the desired accuracy is reached.

The decision to stop the iteration in any one increment of loading is based on the

computed displacement at a preselected nodal point. If the newly computed displacement

divided by the estimated displacement or the displacement computed in the previous iteration

is less than a chosen ratio, then the process is stopped for the current increment and the

analysis goes on to the next increment of loading. Typical values of the ratio and the strategy

used in performing an analysis will be described later when we consider particular case studies.

6.2 INELASTIC LARGE DEFORMATION SOLUTIONS

The analytical process used when the material in the structures becomes nonlinear and

path dependent is somewhat similar to that just described, but it is more involved. We must

now consider the changing D matrix in equation (2.30), which is written there for the general
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continuum case. For the specialized case of the quadrilateral shell finite element, where the

equilibrium equations have been redefined in terms of the generalized stresses and strains

convenient for plate and shell problems, the D matrix takes the form of the integral in equa-

tion (5.48). At any point through the shell, the stress and strain must satisfy equation (3.49)

so we must show how this equation is implemented for the quadrilateral to form the relation-

ship between generalized stress and strain.

Figure 6.2 shows a section through the thickness of the element and the I I stations

used to perform the numerical integration. These 11 stations are used at each of the 16

integration points shown in Figure 6.1

Equation (5.48) is rewritten here for convenience

h

,AN = 2 FA[p-I Z[p-I- (AE1J ...-- r-----. dZ ---
Yý4 hZ 2 [p-I ýAKJ

and the nomenclature is as defined previously. The submatrix p is the stress-strain relation-

ship given in parentheses in equation (3.49). For the present case, it is three by three for

plane stress in conformance with the Kirchoff assumptions. To simplify the description, the

equation will be rewritten as
h

DB BB dZ{ (6.4)

The components of each of the submatrices are computed approximately as follows:

DD E (Pij)k AZ (6.5)'i k=l,l 1

DBij E (PiJ)k Zk AZ (6.6)
k=1,1

BBi. F Z (Pij)k Z2 AZ (6.7)

i k=l,l I k

where the components of p are determined at each step of the loading. The integral is evalu-

ated by using the Simpson rule for approximation.

The total numerical integration scheme for computing the element stiffness matrix may

now be written as

[K]syM= [AIT( 1 [B2](kl L [ p]Z] AZ I[B1]AA) [A]]SYM (6.8)i J:,6 V ~ ~Lt [p-j[]] A-Z-

where the symmetric part is taken as the stiffness and the nonsymmetric part is treated as an

equivalent force as described in Chapter 2.
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The varying nonconservative behavior of inelastic materials requires recording the trace

of each material point in the stress and strain space. Thus for each of the 1 I stations through

the thickness at each of the 16 integration points of the element, sufficient information has to

be recorded to allow determination of the current incremental relationship between stress and

strain. The three current stresses, two direct and one in-plane shear, and the current equivalent

plastic strain must be stored for each point for both the isotropic and kinematic hardening

rules. Additionally, the isotropic rule uses the current equivalent yield stress whereas the kine-

matic rule uses the center of the current yield surface to determine the appropriate incremental

relationship. The following description applies primarily to the isotropic hardening rule.

The program allows the option of scaling the linear solution to the load which causes

yielding at the highest stressed point within one of the elements or the option of incrementing

the load (as described in the previous section) with elastic material properties before the plas-

ticity analysis started. This second option is important for structures in which the effects of

nonlinear geometry may be important, e.g., shells.

After each increment of load is applied and a solution is obtained, each point in each

element is tested to determine whether it will go into the plastic range on application of the

next increment of load. This is found from the estimated generalized nodal point displace-

ments described in the previous section. Thus, using the relationship between incremental

generalized strain and incremental generalized nodal point displacement in local element

coordinates as

{ =[1321 [A] {Av~e (6.9)

we may obtain the strain at any point through the thickness by using equation (5.45). Once

the estimated strain is computed, the estimated increment of stress that will occur is computed

in accordance with equation (5.43) where only elastic material properties are used in the

equation. This estimate of stress is then added to the stress that exists at the point. If on the

basis of the von Mises criterion it is determined that the point will remain elastic, then compu-

tation of the stiffness can continue. If not, the material at the point will be in the transition

region and the estimated reduction in stiffness will have to be determined.

The approach introduced by Marcal and King [661 for determining the incremental

relationship between stress and strain is briefly outlined as follows:

a. For simplification here, it is assumed that the increment of load will allow the

point to remain elastic during part of the increment, say the ratio m, and that the remaining

part will be inelastic, (1-m). McNamara [67] described the use of this method for determin-

ing the value of m in connection with problems of transient vibration. Figure 6.3 gives a

representation of the method. Th- value of m is obtained by writing the von Mises yeild

condition

J2 (So + mAS) = 1/3 a0 (6.10)
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where S' is the stress state at the intermediate configuration and AS is the increment of stress

that results if the increment of load allows the material to remain elastic. A quadratic eciua-

tion in m results and the root is taken that causes the stress vector to be pointed outward

from the loading surface.

b. With the value of m, the estimated increment of stress occurring up to yield is

added to the current stress. The deviatoric part of these stresses is then computed.

c. Now by using the estimated deviatoric stresses, the total estimated strains (from the

estimated nodal point generalized displacements and equation (6.9)), the slope of the equiva-

lent stress-equivalent plastic strain curve, and the equivalent stress in equation (3.50), the

estimated increment of equivalent plastic strain can be computed. If this is the first plastic

loading of the point, the initial slope of the equivalent stress-equivalent plastic strain curve is

used in the computation. The strain is then reduced by the value of m. Writing the estimated

plastic strain in finite increment form, we have

AeP =I (-i)- 2/3 oe j Cijrs AT2 + , Ci.k ' e (6.11)
4/9de - e I ij °ikQ ý

de~,e -1 1K)k

d. The above-computed equivalent plastic strain allows determination of the estimated

slope of the material curve at the end of the increment. This slope is used to determine a
weighted mean slope that is assumed to be acting over the increment.

e. The final incremental stress-total strain relationship is computed to be

A ( Cijk k°P q CPq C Sr ) AeT
A kM ijrs -(1 -i)2 G Cpqr u s (6.12)

dee e pq pqrs rs
P

f. If this is the last iteration of a particular load increment, the equivalent plastic strain

and total stress are now updated and stored by using equations (6.11) and 6.12), respectively.

If more iterations are needed to meet the desired accuracy, the quantity in parentheses in

equation (6.12), which corresponds to the p matrix in equations (6.5) through (6.7), is used to
form the D matrix for the next iteration.

The description of the implementation of the kinematic hardening rule is essentially

the same as given above except that the loading surface translates; this requires tracking and

storing the surface origin. Special attention has to be taken to ensure that the surface trans-

lates along the normal to the surface for the plane stress case under consideration here.

Hibbitt [ 11 I satisfied this requirement by recognizing the incompressibility of plastic deforma-

tions. Thus the trace of the translation tensor in equation (3.32) must be equal to zero. This

is satisfied by adding to the two direct stress translation components the negative of their sum.
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CHAPTER 7

NUMERICAL EXAMPLES

The accuracy of the previously derived shell element and nonlinear formulation will

now be examined. We will first consider tile linear applications of the element, then study a

very simple, highly nonlinear rod and spring problem, and finally consider nonlinear applica-

tions of tile shell element.

7.1 RIGID BODY MODES

Our method for studying the rigid body modes of tile quadrilateral shell element was

introduced in Section 5.8. It was stated there that tile linear stiffness matrix should have six

zero eigenvalues, corresponding to each of the rigid body modes- since we are using a numerical

approach, the six eigenvalues will not be exactly zero. We also pointed out that the eigenvalue

would be considered in ascending order and that the nineteenth would be the first one

associated with the deformation of the element.

Tile results of tile study of the eigenvalues are given in Figure 7.1. Tile stiffness matrix

of an element that represents the 10-inch sector of a spherical shell is analyzed. Four differ-

ent radii of the sphere are considered. The matrix subroutine package of the Argonne National

Laboratory [69] was used to compute the values.

The results shown in the figure clearly demonstrate the characteristics stated in Section

5.8. It is also seen that as tile element becomes more and more shallow, i.e., as the ratio of

element side length to radius of shell decreases, the results become closer to what is expected.

The first six eigenvalues were very small compared to the seventh. Moreover, there was a big
difference between the eighteenth and nineteenth eigenvalues.

The dependency of the computed eigenvalues on the shallowness of the element indi-

cates that for application to small displacement problems, the adequacy of shell fininte ele-

ments to satisfy the rigid body requirement is highly dependent on the strain-displacement

relationships that are used in the element. In other words, as the element becomes flatter,

the shell terms become less significant and the computed values approach the ideal values.

7.2 MEMBRANE CYLINDER - STRESSES

Examination of the need for an equilibrium correction term in the incremental formu-

lation (Section 2.2) showed that it arose from the fact that the stresses did not satisfy the

equilibrium equation at each point within the element and on the boundary. Thus, the

equilibrium equations are satisfied only in an integral or average sense. The question arises

then as to how to interpret the stresses that can be computed at each one of the integration

points shown in Figure 6.1. In other words, how can physically meaningful stresses be ob-

tained? One way would be to make the elements very small, smaller than required for an
accurate displacement solution. Of course, this is undesirable because the additional elements

increase computing costs.
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EIGENVALUES
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25 -0.85(10)-6 -0.22(10)-6 0.16(1o)- 6 0.16(10)- 5  1.0
50 -0.19(10)-5 -0.10(10)-5 -0.39(10)-7 0.25(10)-6 0.42

100 -0.16(10)-5 -0.17(10)-6 0.78(10)-8 0.29(10)-6 0.69(10)-2

1000 -0.12(10)- 5 -0.27(1O)- 7  0.18(10)- 6  0.50(10)-6 0.94(10)-6

6 7 18 19 48

25 1.0 1.0 0.45(10)2 0.15(10)6 0.29(10)9

050 0.84 1.0 1.0 0.14(10)6 0.29(10)9

100 0.14(10)-1 1.0 1.0 0.14(10)6 0.29(10)9
1000 0.18(10)-5 1.0 1.0 0.14(10)6 0.29(10)9

Figure 7.1 - Eigenvalues of Stiffness Matrix of Quadrilateral Element for Sector of Sphere
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When applying the quadrilateral element, the use of average strains to compute the

stresses has been found a very convenient approach. Thus, by using the notation of Chapters

5 and 6, the average strain may be written as

[B2],v[Al IAI (7.1)

where
[B2g= J(, [B2ibASj) (7.2)

Ev i=S1,16
i=1,16

and AS, is the area of the subtriangle i in Figure 6.1. Thus equation (7.2) is an expression for

a weighted B2 matrix with which the average strain can be computed.

The analysis of the membrane cylinder shown in Figure 7.2 demonstrates the argument

for using the average strain concept. The cylinder is loaded externally with hydrostatic

pressure. It is restrained from moving in the longitudinal direction and thus is in a state of

plane strain. The cylinder is idealized with three elements all of the same size.

The radial displacement computed by using the quadrilateral element agreed within 2

percent of the exact value. However, the membrane stresses computed at the 16 integration

points ranged from 25 percent over to 15 percent under the exact values. The average mem-

brane stresses computed by using equation (7.1) were 4.5 percent over the exact values. This

is much better than obtainable by the usual practice of taking the stress at the centroid of the

element (approximately 15 percent under the correct value).

7.3 GRAVITY-LOADED CYLINDER

The quadrilateral element was evaluated with reference to the cylindrical shell roof

shown in Figure 7.3. The shell was loaded by its own dead load; it was supported by

diaphragms (simple support) at each end and was free along both sides.

The roof problem has been studied by many developers of finite elements for shells

and has become a bench mark for comparing the accuracy of the elements reported. In a

paper comparing the finite difference and finite element methods, Forsberg [70] pointed out

the difference in deflections that can be obtained with the finite element method in applica-

tion to this problem. He reported that these differences can be attributed to the shell

equations used in formulating the various elements. By first programming the shallow shell

and then the deep shell equations into a very accurate finite difference program, he was able

to explain the differences that had previously been reported in the literature. Forsberg also

indicated [70] that the analysis which uses flat plate elements converges to the results ob-

tained by the deep shell equations implemented in the finite difference program.

The convergence of solutions to the displacement obtained at the center of the free

edge is plotted in Figure 7.4 for several of the most recent elements published and for the
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quadrilateral element reported here. The two results obtained by the finite difference shallow

shell and deep shell study of Forsberg [70] are also shown. The abscissa is the total number

of unknowns.

Ahmed et al. [71] extended to shell problems the isoparametric concept used for the

development of a broad class of finite elements. These results are shown in Figure 7.4.

Specializations were recently added to make the original formulation more effective with

reference to thin shells [721. Several schemes were studied, and two of the more rapidly

converging ones are included in Figure 7.4. The first is the case where a simple 2 x 2 Gauss

point integration was used with the parabolic element, and the second is the application of a

cubic element with modified transverse shears. It is interesting to note that the first converges

to the shallow shell results and the second to the deep shell results obtained by Forsberg [70].

The result obtained by the rapidly converging element of Cowper et al. [22] is also
plotted in Figure 7.4. This element is a conforming type and uses fifth order polynomials

for displacements, which explains its good behavior. Its convergence to the shallow shell dis-

placement of Forsberg [70] is as expected since it is this type of strain displacement equation

which is used in global coordinates to derive the element.

Finally, the displacements obtained from the quadrilateral element reported here are

given in Figure 7.4 for increasing grid refinement. Meshes of 2 x 2, 3 x 3, 4 x 4, 4 x 5, and

4 x 7 were used in the study. The five and seven subdivisions were in the longitudinal direc-

tion. Since the Marguerre shallow shell theory [58] is applied in local element coordinates

and not in global coordinates, the displacements converge to the deep shell displacement.

Computing time for the 3 x 3 case on the CDC 6400 was 2.6 minutes, approximately three

times that required on a CDC 6600 computer.

7.4 RING-STIFFENED CYLINDER

In Section 5.3, the generalized displacements were increased to 12 per node to include

the derivative of u, v, and w with respect to z. This was done to facilitate the transformation

of the element so that it could be applied to branched and stiffened shells.
The portion of the ring-stiffened cylinder shown in Figure 7.5 was analyzed to dem-

onstrate this capability. It is assumed that the cylinder is infinite in length with periodic
spacing of the stiffening rings. Node A is a midbay between two rings. Since the behavior is

periodic, the idealization shown may be used to analyze the shell.

At points where the shell is not intersected by another shell or stiffening reinforce-

ment, such as nodal point B, a local nodal point coordinate system is established as described

in Section 4.4 and the degrees of freedom that are derivatives with respect to the shell normal

are set equal to zero. This is generally true in applying the element. Since these degrees of

freedom are not associated with the stiffness of the element, they are eliminated. This is not

done at points such as C since the derivatives with respect to the normal on the shell surface

are degrees of freedom that are associated with the stiffness of the elements in the web of
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the stiffener. Thus there is a maximum of nine degrees of freedom at points such as B, and a

maximum of twelve degrees of freedom at points such as C.

The results obtained by using the quadrilateral element in the ten-element idealization

are tabulated in the figure. The displacements obtained by using the theory presented by

Pulos and Salerno [731 are also shown. The maximum difference is seen to be approximately

4.5 percent. It is noted that the study could just as well have been done with five elements

since there is no variation in the circumferential direction.

7.5 BAR-SPRING PROBLEM

The previously derived incremental formulation is applicable to all nonlinear static
structural problems which include the effects of large deformations. Figure 7.6 presents a
very simple, but highly nonlinear, problem that is good for purposes of evaluation and com-

parison.

The bar problem has been studied by a number of investigators, most recently by
Hibbitt [I I ] who uses the example to demonstrate the error that occurs in summing stresses
in an incremental solution to nonlinear problems. Previous incremental formulations linear-

ized the nonlinear equation in order to obtain a solution; this caused an error in the accumu-

lated stresses since the strain, and hence the stresses, change quadratically in an increment.

The results of the linearized formulation are plotted in Figure 7.6 along with the results

obtained by the incremental formulation derived herein. The finite element results are plotted

against the exact solution. Note that the formulation derived in the present study noticeably

improves the computed displacements.

Since the formulation that was derived in Chapter 2 is complete, an iteration process
should lead to very accurate answers for the bar-spring case. This was found to be true.

The results of the study are given in Table 7.1. The linear result was obtained first
with a 1/10-pound load. The displacement was then computed at load levels that were

multiples of 3 pounds up to 30 pounds. The tolerance ratio referred to in the table is de-
scribed in the last paragraph of Section 6.1. The integers shown in the table are the number

of iterations required to go from one load level to the next in order to obtain the indicated

accuracy.

The entries in the table indicate that very accurate results can be obtained with the
formulation if one is willing to pay the price for computing. There may be cases where

extreme accuracy is desired, but for most practical problems, the high number of iterations

shown for the tighter tolerances is not warranted. The important point is that the accuracy is

there if it is needed.
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TABLE 7.1

BAR-SPRING PROBLEM

DISPLACEMENT VERSUS TOLERANCE RATIO

Load Exact Tolerance Ratio

lb Solution 2.0 1.75 1.5 1.25 1.1 1.05 1.01 1.001

0.1 0.00625059

0 0 0 0 1 1 2 5
3.0 0.235363 0.22458 0.22458 0.22458 0.22458 0.232882 0.232882 0.234794 0.235340

0 0 1 1 3 5 13 26
6.0 1.0000 0.593575 0.593575 0.681971 0.681971 0.794509 0.858871 0.966944 0.997661

l 1 1 1 1 1 1
9.0 1.76462 1.79608 1.79608 1.79130 1.79130 1.76925 1.76409 1.76428 1.76488

0 1 1 2 2 3 3 4
12.0 2.0000 1.94017 2.00431 2.00418 1.99996 1.99991 1.99992 2.00026 2.00024

0 0 0 1 1 2 3 4
15.0 2.16169 2.17539 2.15485 2.15424 2.16286 2.16329 2.16168 2.16193 2.16189

0 0 0 1 1 2 3 4
18.0 2.28913 2.26873 2.28626 2.28646 2.29059 2.29062 2.28908 2.28936 2.28930

0 0 0 0 1 2 3 4
21.0 2.39610 2.40428 2.39155 2.39134 2.39144 2.39731 2.39604 2.39630 2.39624

0 0 0 0 1 1 3 4
24.0 2.48921 2.47746 2.48749 2.48765 2.48861 2.49023 2.49017 2.48939 2.48933

0 0 0 0 1 2 3 4
27.0 2.57222 2.57828 2.56939 2.56925 2.56878 2.57309 2.57210 2.57238 2.57231

0 0 0 0 1 1 3 4
30.0 2.64747 2.63890 2.64651 2.64663 2.64717 2.64823 2.64808 2.64761 2.64755

7.6 SIMPLY SUPPORTED SQUARE PLATE

The next example gives a further comparison between the linearized formulation and

the formulation developed in this study. The structure is a simply supported square plate

(Figure 7.7) subjected to uniform pressure loading. The plate is restrained against in-plane

motion and thus causes the buildup of membrane forces. The thickness is 0.1 in., Young's

modulus is 30 million psi, and Poisson's ratio is'0.316.

Levy [74] solved this problem by a trigonometric series expansion. Bergan [47] used

16 elements for a finite element solution to the problem and performed a Newton-type

iteration at each load level to improve the results. Their results are shown in Figure 7.7 along

with the Hibbitt results [ II ] for the linearized formulation and the formulation developed in

the present study. Both runs with each of Hibbitt and present formulations were performed

with the tolerance ratio set equal to 2.0 in order to compare running times. Since the formu-

lation presented in Chapter 2 does not require the computation of the initial stress, i.e.,

geometric stiffness matrix, one would expect the running time to be less for this theory. The

formulation of this study took 57 percent of the time required for the theory presented by

Hibbitt [ 11]. One would not expect this same reduction in all cases since as size the problem
gets larger, the computation of stiffness matrices becomes a smaller part of the total computing
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time. Note that again that the present formulation gives improved results over the linearized

formulation for the same idealization and iterative scheme.

7.7 CENTRALLY LOADED SPHERICAL CAP

The centrally loaded aluminum cap shown in Figure 7.8 was analyzed to give an

example of inelastic material behavior. A 90-deg segment of the cap was idealized with seven

elements. This case and the experimental results are from Penning and Thurston [751. The

shell was fixed at the boundary, Young's modulus was equal to I x 107, and Poisson's ratio

was 0.33. The proportional limit of the effective stress-effective strain curve was 37,000 psi.

To model the strain-hardening portion of the curve, three linear segments with the following

properties were used: 0.5 x 107, 0.0; 0.15 x 107, 0.9 x 10-3; and 0.44 x 106, 0.28 x 10-2.

The first number in each pair gives the slope and the second number the starting equivalent

plastic strain of the segment.

The comparison between experimental results and the computed results obtained here

is shown in Figure 7.9. Two different loading cases are studied, concentrated load and the

case where the load is distributed over an area of 0.5-in. radius at the apex. The experimental

result for the first case is for a loaded area with a radius equal to 0.0625. It was felt that

having the load concentrated at a point would be sufficient to model the physical behavior.

The considerable difference in the displacements for the two cases shown in Figure 7.9

can be explained by the early yielding that occurred in the point-loaded case. Only this case

was run by both the linearized formulation and the formulation presented in this study. The

tolerance ratio used in all runs was 1.2. The present formulation required 63 percent of the

computing time required for the linearized formulation.

7.8 PEAR-SHAPED CYLINDER

The next problem, shown in Figure 7.10, poses a good exercise for both the quadri-

lateral element and the nonlinear incremental formulation presented herein. This example is

taken from Hartung [761 whose results were obtained with the finite difference method. The

structure is similar to a proposed configuration for a space shuttle fuselage.

The load was applied to the end of the cylinder by a uniform end shortening. The

cylinder was modeled by eight of the quadrilateral shell elements. Only one-fourth of the

total area of the cylinder had to be modeled because of the double symmetry. The tolerance

ratio used in the analysis was 1.05. Again, this is the ratio described in the last paragraph of

Section 6.1. The integers in parentheses next to the data points indicate the number of

iterations required to go from one load step to the next. Thus in the first increment of load-

ing after the linear solution, i.e., in going from 100 to 200 lb of loading, the equations were

formed the one required time plus five additional times. In the upper limits of the loading,

the equations were merely assembled and solved one additional time.
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The Hartung analysis [76] predicted a collapse at about 2400 lb whereas the present

analysis was able to determine an equilibrium position at 2800 lb, the load at which the

computation was stopped. The results given here for the finite element analysis cannot be
regarded as conclusive until the same result is obtained in another analysis performed with a
greater number of elements. This additional run would have to be made if the present

analysis were being done for production or design work. At this point we note only that it
is very encouraging that a reasonable analysis is obtainable with only eight elements and that

the maximum load is reached in eight increments of loading.
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CHAPTER 8

SUMMARY AND RECOMMENDATIONS FOR FURTHER WORK

8.1 SUMMARY

The first part of this dissertation presented a derivation for an incremental solution
procedure for general structural mechanics problems. It was shown that the contribution of

the sum of all previous increments had to be included in the solution for each load increment.

The resulting nonlinear equilibrium equations were then manipulated and put into a form
which allowed a combined incremental-iterative approach to their solution. The finite ele-

ment formulation was then used to put the equilibrium equations into a form for their

numerical solution. Since the resulting set of equations in the displacements turned out to he

nonlinear and nonsymmetric in the coefficients, a solution procedure was introduced which
uses present linear-symmetric equation solvers. The result of all the above was a direct solu-

tion procedure whereby the nonlinear incremental equations can be solved by using existing
solution procedures without the need to first linearize the equations.

Next, the basic theory of plasticity required for the stress-strain relationships was
reviewed. The description considered only small strain problems which may be assumed to be

independent of temperature and time. Although this was not a primary part of this disserta-

tion, its inclusion demonstrated the versatility of the previously derived formulation of the

incremental equilibrium equations and solution procedure. The inclusion of the plastic ma-

terial behavior was possible because a linear stress relationship was obtained between an incre-

ment of total stress in terms of an increment of total strain, and this is what was needed in
the derivation of the incremental formulation.

The geometry of a general quadratic surface was considered next in preparation for the

derivation of the quadrilateral shell element. The development work done here provides the

necessary tools for performing an analysis of a structure which may be made up of several

different quadratic surfaces. The slopes of the surface in terms of the local system can be

computed by using a coordinate transformation in which the quadratic form of the surface is

expressed in terms of the variables of each individual element coordinate system. This then

enables the exact shell geometry to be used for computing the element stiffness matrices and

for correcting the load to the base plane projected reference system. The work on geometry
was concluded with emphasis on the surface vectors which were to be used later in satisfying

the element convergence requirements and in performing transformations.

The derivation of the quadrilateral shell element was performed using the Marguerre
shallow shell strain-displacement relationships [58]. The assumed displacement distribution

used in the element is the same as that first proposed by Fraeijs de Veubeke [59] except that a
linearization of the derivative degrees of freedom was imposed along the boundary to eliminate

the midside nodes. The previous incremental formulation of the equilibrium equations was

then specialized for the quadrilateral element in terms of the generalized stresses and strains;

this resulted in expressions for the matrices used in computing the stiffness matrix and the

88



equilibrium correction vector. The form of the load vectors due to pressure loading, the

change in loading due to a change in geometry, and the body force loading were derived.

Transformations required for the element stiffness matrix and its degrees of freedom were then

developed. These consistent transformations eventually facilitated the study of branched and

stiffened shells. The derivation of the quadrilateral element was concluded with an explana-

tion of the work done to ensure that the element satisfied the necessary convergence require-

ments.

The vehicle used for implementing all of the above and without which the work would

have been practically impossible is the general purpose nonlinear finite element computer pro-

gram developed by Marcal and his associates at Brown University. The format of the program

is such that it is a very valuable research tool, and it is this capability that was exploited in

performing the present work.

The primary work on the dissertation was concluded with the application of the

quadrilateral element and the nonlinear incremental formulation. Examination of the adequacy

of the shell element to satisfy the rigid ,body displacement requirement indicated that as the

element became shallower, it had an increased ability to undergo rigid body motion without

induced strains. The examination of the stresses in the element strengthened past experiences

with higher order finite elements which had indicated that a weighted mean or average of the

stresses provides far better values that have more physical meaning. The linear application of

the shell element appears to work well for the cases studied, e.g., in application to a gravity-

loaded cylinder, it gave very good results compared with previously published elements. Its

application to a simple bar-spring problem proved to be very interesting and on the basis of

agreement achieved with exact values, the formulation appears to have the capability

to produce very accurate results. The use of the quadrilateral element in conjunction with the

incremental formulation introduced here gives improved behavior over the previous linearized

formulation. The application of the element and the formulation to a pear-shaped cylinder

provided very encouraging results. This is the only known finite element solution to this

problem.

8.2 RECOMMENDATIONS FOR FURTHER WORK

There are a number of possible extensions to the work reported in this dissertation.

The most rewarding would be efforts to reduce the inordinate amount of computing time re-

quired for the nonlinear analysis of structures.

The nonlinear incremental formulation introduced herein uses a linear extrapolation

method for estimating the amount of displacement that will occur in going from the inter-

mediate configuration to the current configuration. Some higher order scheme should be

investigated to determine whether it is possible to reduce the number of iterations required to

reach convergence.
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Another variation on the present incremental formulation that warrants investigation is

the treatment of all nonlinearities as pseudo forces. As noted in the introduction, the non-

linearity due to inelastic material behavior is treated this way in the initial strain approach.
There is a particular advantage in doing this, particularly for large problems, since the system

of stiffness equations has to be solved only once during the solution process. (The evaluation

of earlier formulations indicated that the equations had to be solved for each iteration.) Thus,

if a method could be perfected to treat all of the nonlinearities as pseudo forces, the equiva-

lent forces could be computed and then back-substituted to obtain the displacements. How-

ever, efforts to treat geometric nonlinearities as pseudo forces have not been too successful.

A pilot study was conducted to determine whether the formulation developed herein
was sufficiently accurate and stable to permit all of the geometric nonlinearities to be trans-

posed the right side and to treat them as equivalent forces. Using similar symbols as given in

equation (2.32), we may write the resulting equation as

[KIL jAiXf = JP P + +AP+ IFI + + +AGF- - E1- JKINJAiestj (8.1)

where now the superscripts on the K matrix indicate the linear and nonlinear parts.

Equation (8.1) was applied first to the bar-spring problem studied previously (Section

7.5). A tolerance ratio of 1.001 was used in the computation. The results obtained by using
equation (8. 1) are compared in Figure 8.1 with experimental values and with the results of a
linearized formulation by Haisler et a1.77] for load increments of 0.2 and 0.05 pounds. The

results agreed within two or three significant digits for the similar case given in Table 7.1 up

to a certain level.

Loads were applied at the same levels in the bar-spring problem as given in Table 7. 1,
but the computation would not settle down for the 24-lb load level and simply oscillated

about the correct displacement. It is believed, however, that this problem could be overcome

by improving the controls used for determining convergence.

Equation (8.1) was also utilized to analyze the pear-shaped cylinder studied previously

(Section 7.8). The tolerance ratio of 1.05 was again used. The solution process of equation

(8.1) behaved very well and results obtained were identical to those given in Figure 7.10, in-

cluding the number of iterations to reach convergence.

Finally, it is recommended that the incremental formulation presented in this disserta-

tion be extended to dynamic problems by including inertia effects. This area of research may
prove fruitful inasmuch as the solution of nonlinear dynamic problems is extremely difficult.
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APPENDIX

QUADRATIC SURFACES
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